brennstoffzellentechnologie bei daimler - hs-karlsruhebrennstoffzellentechnologie bei daimler dr. g....

24
Brennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar erneuerbare Energien Uni Karlsruhe 10. Mai 2017

Upload: others

Post on 10-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Brennstoffzellentechnologie bei Daimler

Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure

Seminar erneuerbare EnergienUni Karlsruhe10. Mai 2017

Page 2: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Daimler roadmap to sustainable mobility

High-techcombustion engines

Consequenthybridization

Electric vehicleswith battery and fuel-cell

Page 3: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

More than 8 million km customer experienceMore than 4,000 h fuel cell durability

Mercedes-Benz B-Class F-CELL Mercedes-Benz Citaro FuelCELL-Hybrid

More than 4 million km of regular line operationMore than 10,000 h fuel cell durability

Fuel cell technology: Worldwide experience for highest technological know-how

Page 4: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Daimler AG

Mercedes-Benz F-CELL World Drive 2011

3 B-CLASS F-CELL125 DAYS14 COUNTRIES30,000 KM

Page 5: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Minutes

Perc

ent

< 3 min. > 3 min.

Mercedes-Benz F-CELL Lessons Learned:Fast Refueling is validated

Result of 36,000 refuelings in real-life operation:2.8 minutes refueling time in average

Page 6: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Mercedes Benz F-CELL Lessons Learned for Next Generation

Seite 6

Different customer profiles User behaviour Different climate Different H2-Infrastructure Reliability in daily use

Load distribution Degradation Statistics & Prognosis

GLC-Fuel Cell System Learnings Apply learnings from Fleet and test benches

e.g. to reduce stress on stack componentsMore stable components (e.g. catalysts) Implement recovery procedures Improved component specifications

Fleet Operation (Customers) Powertrain-Testing

Phoenix

Page 7: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

DAIMLER: Next Generation Fuel-Cell SystemHuge technological progress

2010: Underfloor package 2017: Compartment package

30% reduction fuel cell engine size

90% reduction of Platinum

30% higher electric range in future vehicles

40% higher system performance

Page 8: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Requirement/Development Cascade (top-down) & Validation/Testing Cascade (bottom-up)

Vehicle

Powertrain

Systems

Components

The V Model of Product Development

Page 9: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Durability test distribution on different integration levels:

Good correlation of results on different integration levels required!

Hardware-StagesIntegration Level

Stage 1 Stage 2 Stage 3 Stage 4

Component Level

System Level

Powertrain Level (Test Bench)

Vehicle Level(Road Testing)

Feedback for Control & Component Development

Page 10: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Stack (component) Testing Philosophy:Transfer failure mode from Vehicle/Powertrain to Components

10

Requirements Definition Conformity to Requirements

Fundamental Understanding

Component Verification

Stack Verification/Validation

MaterialRequirements

& Testing

Stack ModuleRequirements

& Testing

Usage Data Requirements

Verification/ Stack Validation

MaterialsTests

Subscale Tests Module Tests System & Vehicle Tests

Failure Mode Identification and Feedback to Design Process

Component/StackRequirements

& Testing

Page 11: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Key Success Factor: Fast Material Tests that correlate with Stack testing for Prediction of Stack Behaviour in System/Vehicle

11

MaterialsTests

Subscale Tests Module Tests System & Vehicle Tests

Performance & Durability Prediction Performance & Durability Validation

Material Characteristics:Tests in wide range ofoperating conditions

Failure mode specifictest protocols

MEA andSubcomponentInteraction:Tests in specifiedoperating conditionsand window aroundSystem conditions

Integrated Stack:Tests in specificconditions derivedfrom vehicleincluding drive cycles

Fuel Cell System/PowertrainVehicle:Performance &Durability validationadressing fuel cellspecific needs

Page 12: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Example: Testing for Start/Stop in the driving cycle

Air-Air StartHydrogen-Air Start

Traffic Shopping Long parking

Duration of “Stop“

• At start-up, air-hydrogen front at anode

• Oxygen is reduced at anode => Corrosion of C-support

1) Source: Yu et al., Journal of Power Sources 205 (2012) 10– 23

• Short stops: Negligible degradation

0

25

50

75

100A

node

gas

co

ncen

trat

ion

(%)

Time

Long stops: After shut-down air diffuses to anode

H2 O2

1) 1)

Page 13: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Example: RDE and Stack Measurement Results

Catalyst RDE test results are comparable with In-situ Test Result in Stacks, but 10 times faster

=> Component Testing (RDE) can be used to predict catalyst durability and to design fuel cell system and operating strategy to optimize durability

Page 14: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Komponenten-Entwicklung BZ-System: Beispiel ETC

14

Verdichter-Rad

TurbineMagneten im Rotor Axiales LuftlagerRadiales Luftlager

• Ölfreie Lagerung notwendig => Luftlager• Reibungsarme Beschichtung für axiale und radiale Lager notwendig für An- und Abschaltvorgänge• Mehr als 200.000 Start – Stopp Zyklen erfolgreich getestet

• Herausforderung: Vereinfachung der Fertigungstechnologie um Kosten zu senken

Page 15: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

DAIMLER: Next Generation Fuel-Cell SystemGLC F-CELL Facts

15

Approx. 500 km combined electricrange NEDC

< 50 km ranges in battery-electricmode alone

700 bar hydrogen refueling in approx. 3 min

Battery with an energy content ofapprox. 9 kWh

2 carbon fibres coated tanks with~4 kg capacity

Fuel celldrive system

Charge socket

Hydrogen tank

Electricmotor

H2 fueling nozzle

On-board charger

Lithium-ion battery

Page 16: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Starting 2017: Mercedes-Benz GLC F-CELLwith plug-in-technology

Page 17: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Daimler AGDAIMLER AG | RD/EFR | Juli 2016

Starting 2017: Mercedes-Benz GLC F-CELLwith plug-in-technology

Page 18: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Daimler AG

Hardware Code Receptacle (SAE J 2600)

Keep it simple and utilize interfaces experience from current standard!One coupling for each pressure regime is sufficient!

Refueling Receptacle T N1 35 MPa Refueling Receptacle TN1 70 MPa

Source: WEH.de Source: WEH.de

Page 19: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Daimler AG

>>H2-Infrastructure

Page 20: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Daimler AG

Volatile energy supply due to feed-in of renewable electricity

The feed-in of wind energy already causes significant peaks in the energy supply

2016

The supply of wind energy may exceed the aggregate demand temporarily

2020

In the future, peaks in energy supply and demand become normal.

2050

Residual load has to be compensatedby thermal power plants

e.g.: 2050(70% of RE)

Elec

tric

ityge

nera

tion

/con

sum

ptio

n

Time-dependent over- or under-supply of renewable electricity requires highly-efficientand large-scale electricity storages. Opportunity: H2-storage

Increasing Feed-in of renewable electricity

Page 21: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Daimler AG

Dezentrale Speicher Zentrale SpeicherDecentralized storage Central Storage

Quelle: LBST (2011): Metastudie: Speicherung Erneuerbarer Energien, S.9 aus BMWi 2009

Excess electricity can be stored in different storage systems

Central long-term storage

Hydrogen is the ideal mid- to long-term storage for large amounts of energy from excess electricity

Supraleitende magnetische

Energiespeicher

Doppelschicht-kondensatoren

Schwungmassen-speicher

NiMH/Li-Ion

H2(FCV)NiCd/LA

HT -Batterien

Flow - BatterienDruckluft –

Speicherkraftwerk

H2 – Speicher Stationär

Pump-Speicher-kraftwerk

NiCd/ Blei Säure

Superconducting magnetic energystorage

Double layer capacitors

Fly-Wheel storage

NiMH/Li-Ion

H2(FCV)NiCd/LA

HT battery

Flow batteryCompressed air storage power plants

H2 – Stationary storage

Pumped storage power plant

NiCd/ Lead-Acid

Tage

sspe

iche

rW

oche

nspe

iche

rApplication ranges of different energy storage systems

shor

t-ter

m s

tora

geLo

ng-te

rm s

tora

ge

Nominal Power

Nom

inal

dis

char

ge d

urat

ion

[s]

Efficiency

Volu

met

ric e

nerg

y de

nsity

in k

Wh/

H2 H2 electricity generation

ACAES Pumped storage power plant

Combustion in a combined-cycle power plant

Direct use

• Today only readily controllable fossil power plants are able to compensate long-term (days or weeks) fluctuations (e.g.: lack of wind).

• Replacing these fossil power plants with energy storage systems helps to speed up the Energiewende.

• H2 cavern storage systems have the highest energy density.

Page 22: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Daimler AG

Comparison of WTW greenhouse gas emissions and power consumption of the EUCAR reference vehicle 2020+

0

10

20

30

40

50

60

70

30 40 50 60 70 80 90 100 110 120 130

GH

G*-

emis

sion

[gC

O2e

q/km

]

Well-to-Wheel energy consumption [MJ/100 km]

Well-to-WheelGHG*-emission and energy consumption

FCEV 2020+ (without on-board-charger)100% H2-mode (H2 from wind power)

FC Plug-in 2020+ (with on-board-charger)Energy consumption / GHG*-emissions calculated

analogous to ICE Plug-In (ECE R101)(H2 from wind power)BEV 2020+

Electricity from wind power (no storage)

Storagelosses

pump-storage

H2-cavern storage

storage

FCEV 2020+ (without on-board-charger)100% H2-mode (H2 from natural gas)

BEV 2020+European electricity mix

combination

BEV 2020+Electricity from

wind power (incl. storage)

* GHG: Green House Gas

FC Plug-in 2020+ (with on-board-charger)Energy consumption / GHG*-emissions calculated

analogous to ICE Plug-In (ECE R101)(H2 from natural gas)

Sources: JRC/EUCAR/CONCAWE (2013): WtW report, version 4a,Daimler-internal calculations

Page 23: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

H2-Mobility Build up a H2-infrastructre network until 2023 in Germany

23

Shareholder

Associated Partner

Gov.- Contact

H2-Mobility Signing Ceremony in Berlin 13th October 2015

Putting Hydrogen on the map

By 2018/19 as many as 100 Hydrogen stations across Germany should provide the world´s densest network

*

* By 04/2017 there are 33 HRS are completed, 22 HRS are under construction

Page 24: Brennstoffzellentechnologie bei Daimler - HS-KARLSRUHEBrennstoffzellentechnologie bei Daimler Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure Seminar

Brennstoffzellentechnologie bei Daimler

Dr. G. Frank, Daimler AG, Fuel Cell Component Development & H2 Infrastructure

Seminar erneuerbare EnergienUni Karlsruhe10. Mai 2017