contributorseuratom associations l. carraro, m. mattioli, m.e. puiatti, p. scarin, b. zaniol...

23
Contributors Euratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J Ongena Ecole Royal Militaire, Brussels, Belgium R.Dux, IPP-Euratom Assoziation, Garching Germany M.F.F Nave Centro de Fusão Nuclear, 1096Lisbon , Portugal J.Rapp, B. Unterberg IPF Jülich GmbH, Jülich, Germany L. Gabellieri ,D. Frigione, L. Pieroni ENEA, Frascati, Italy Impurity Transport in High Density Plasmas in JET and FTU 9th EU-US Transport Task Force Workshop Cordoba, Spain - Sept. 9- 12 / 2002 Presented by M. Valisa Task Forces S1 and T/impurity transport

Upload: stephen-shaw

Post on 18-Jan-2018

217 views

Category:

Documents


0 download

DESCRIPTION

Increasing interest in High Density regimes - around Greenwald limit - because reactor relevant. In this context impurities are an important issue: - radiative effectiveness /core power dissipation [ Prad ≈ n e n imp L(T e..) ] - risk of accumulation in the core when confinement improves - beneficial effects in accessing high density regimes w/o confinement degradation (e.g. RI-modes ) - beneficial effects as a heat exhaust channel Same impurity transport model used to analyze the two different experiments Motivation

TRANSCRIPT

Page 1: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Contributors Euratom Associations

L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, ItalyP.DuMortier, A. Messiaen, J Ongena Ecole Royal Militaire, Brussels, BelgiumR.Dux, IPP-Euratom Assoziation, Garching GermanyM.F.F Nave Centro de Fusão Nuclear, 1096Lisbon , Portugal J.Rapp, B. Unterberg IPF Jülich GmbH, Jülich, Germany L. Gabellieri ,D. Frigione, L. Pieroni ENEA, Frascati, Italy

Impurity Transport in High Density Plasmas in JET and FTU

9th EU-US Transport Task Force Workshop Cordoba, Spain - Sept. 9- 12 / 2002

Presented by M. Valisa

Task Forces S1 and T/impurity transport

Page 2: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Content

•High density regimes (relative to the Greenwald limit) of good confinement quality can be obtained in several ways

•Here we concentrate the impurity transport analysis on the high density Radiatively Improved Modes experiments carried out in JET (ELMy H mode) and FTU (Ohmic)

•JET: injection of ICRH on top of NBI heating changes transport in the core and avoids impurity accumulation in Ar seeded quasi stationary D discharges with high density (ne/nG ~ 0.9), good confinement (H98 ~ 1) and high power radiated fraction (> 50 %).

•FTU : Ne seeding of D plasmas avoids saturation of confinement with density and the radiation belt at the edge reduces significantly the metal influx, with no major modification of the impurity transport.

Page 3: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

• Increasing interest in High Density regimes - around Greenwald limit - because reactor relevant.

• In this context impurities are an important issue:

- radiative effectiveness /core power dissipation [ Prad ≈ ne nimp L(Te..) ]

- risk of accumulation in the core when confinement improves

- beneficial effects in accessing high density regimes

w/o confinement degradation (e.g. RI-modes )

- beneficial effects as a heat exhaust channel

• Same impurity transport model used to analyze the two different experiments

Motivation

Page 4: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Background - 1: Radiatively Improved mode

• Integrated scenario combining - high confinement ( increasing with density) - high density - good heat exhaust capability (edge radiating belt)- acceptable Zeff.

• Obtained in Textor-94 ( ISX results of 1984) by seeding the plasma with impurities (Ne, Ar, Si) and then reproduced in several experiments ( Asdex-UG, TFTR, D III-D, JT-60, FTU, JET) .

• For an overview see J. Ongena et al., Physics of Plasmas 8 (2001) 2188

Page 5: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Background 2: Impurity accumulation

Accumulation of impurities depends on the combination of various processes

Transport Processes •Anomalous transport - Typically flattens profiles •Neoclassical transport •Edge transport/ ELM’s/ screening

PWI •Impurity production mechanisms•Impurity net influx

vD

∝ ∇nn

−∇TT

Page 6: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

The analysis method : 1 D impurity transport model (M.Mattioli’s)

Ionisation, recombination and radial transport of the ions of charge Z:

Radiative, dielectronic, charge-exchange recombination

Impurity influx is given as boundary condition, its time evolution is determined by tracking the brightness of peripheral lines.

The transport coefficients D and v, radius and time dependent, are chosen in such a way as to obtain the best ‘global’ simulation of the available experimental data:

Emission line spectra SXRBolometry.

Page 7: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Radiatively improved modes in JET Elmy H mode

•Radiatively improved modes obtained in Jet in various configurations, heating schemes and puffing rates. •Example : Shot 53030 Low triangularity ( ~ 0.22) X-point on septum. Ar Puffing.

• ITER ref. Scenario : H98=1, N=1.8, n/nG=0.85

•J. Ongena et al., Phys .of Plas. 8 (2001) 2188

Page 8: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Ar accumulation

• The after puff phase features higher particle confinement time and density peaking.

• With strong Ar puffing -q(0) increases, - sawtooth amplitude decreases - Ar accumulates - confinement degrades - sometimes radiative collapse is reached

-.

W. Suttrop et al., Phys.of Plas.9 (2002) 2103

Page 9: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Effect of ICRH

Moderate (2-3 MW against 10-12 MW of NBI) ICRH power deposited in the center:

• Heats the plasma core (Te peaks)-> Screens impurity

• Increases diffusion ( ne flattens) -> Opposes impurity peaking

•Keeps q(0) below 1 - maintains sawteeth -> Contribute to expel Ar

• Altogether sustains the anomalous transport -> Reduces impurity accumulation

M.F Nave et al. To be published

Page 10: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Effect of ICRH

Ar density profiles reconstructed by a 1-D Collisional Radiative Transport Code (Mattioli’s)

Septum, low w/o ICRH

Septum, low with 2 MW ICRH

Page 11: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Effect of ICRH

EHT , Continuous D2 Puffing, with 2 MW ICRH

Best radiation belt. Possible contribution from CX

Page 12: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Effect of ICRH

D’s and V’s (from Mattioli’s impurity transport model)

Accumulation- Strong inward convection

No accumulation : convection may become outward

M.E. Puiatti et al .Plas. Phys.Contr. Fus. 44(2002)1863

In shots in which accumulation is avoided

•Anomalous transport increases

• Inward convection decreases and may become outward

-0.60

-0.40

-0.20

0.0

0.20

0.40

0.60

0.80

1.0

0 0.2 0.4 0.6 0.8 1r [m]

pulse n. 53548

pulse n. 53015

pulse n. 52136

v r

[m/s]

pulse n. 52146

Page 13: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Effect of ICRH

Neoclassical transport parameters

In both cases , with and without accumulation , transport is anomalous, but in the shot with accumulation the empirical peaking factor is “closer” to the neoclassical one than in the case w/o accumulation.

0.0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.2 0.4 0.6 0.8 1

D [m2/s]

r [m]

neoclassical

anomalous

blue -> #52146 (Ar not acc.)red -> #52136 (Ar acc.)

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

0 0.2 0.4 0.6 0.8 1

v [m/s]

r [m]

neoclassical

anomalous *3

blue -> #52146 (Ar not acc.)red -> #52136 (Ar acc.)

Page 14: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Effect of ICRH

0.0

1.0

2.0

3.0

4.0

5.0

2 2.5 3 3.5 4

#52136 (Ar accumulating)#52146 (Ar not accumulating)

Te [keV]

r [m]

0.0

2.0

4.0

6.0

8.0

10

2 2.5 3 3.5 4

#52136 (Ar accumulating)#52146 (Ar not accumulating)

ne [ x10

19

m-3]

r [m]

Page 15: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Effect of Sawteeh

Impurity transport model results :

Sawteeth contribute to the expulsion of the impurities from the core

M.Mattioli et al .EPS meeting Montreaux 2002

0

2 10 3

4 10 3

6 10 3

8 10 3

1 10 4

0 0.2 0.4 0.6 0.8 1

SXR emissivity [W/m

3]

r [m]

solid line: simulationdashed line:experimental

ST at 2.95s

Before ST After ST crash

Page 16: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Effect of Sawteeh

However their sole contribution does not justify the absence of Ar accumulation : other mechanisms are present

0.0 10 0

2.0 10 16

4.0 10 16

6.0 10 16

8.0 10 16

1.0 10 17

1.2 10 17

1.4 10 17

0 0.2 0.4 0.6 0.8 1

Ar density [m

-3]

r[m]

simulation with 3 ST and transport of an accumulating discharge

simulation with 3 ST

simulation without ST

# 52146

Page 17: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

JET Elmy H mode / After puff/ Effect of continuous modes

Other MHD activity in the form of continuous modes - m=1 n=1 and others -helps increasing the anomalous transport .

M.Mattioli et al .EPS meeting Montreaux 2002

Page 18: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Radiatively improved mode in FTU

In FTU ohmic Ne seeded plasmas RI-Mode avoids saturation of confinement with density .

Typical signatures

• Ne profiles peak

• Electron and ion temperature increase (for the same input power)

• As a consequence, confinement improves (x1.4)

Page 19: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Radiatively improved mode in FTU

D.Frigione, L. Pieroni et al . EPS Montreaux, 2002

Page 20: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Radiatively improved mode in FTU

Page 21: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Radiatively improved mode in FTU

In Ne seeded shots metal concentration (Fe, Ni, Mo) decreases

This appears to be due to a reduced sputtering associated with the reduced convected /conducted power through the edge (rad ~ .85) .

FTU has TZM (Mo alloy) limitersL.Carraro et al. EPS Montreaux 2002

Page 22: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Radiatively improved mode in FTU

•Impurity transport does not change significantly (same v’s and D’s) give satisfactory simulation results in both shots with and without seeding)

•Impurity transport is anomalous: neoclassical diffusion in the core ~ 0.02 m2s-1

•Accumulation is avoided by a reduction of the influx

Page 23: ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole

Conclusions

•In High density regimes impurity seeded discharges impurity accumulation can be avoided.

•IN JET: The risk of impurity accumulation with Ar seeding is avoided by modifying transport. Adding central deposited ICRH on top of NBI heats the core and maintains q(0) below 1 and flat.

•IN FTU : The radiation belt in Ne seeded D plasmas avoids the risk of impurity accumulation by reducing significantly the metal influx, with no major modification of the impurity transport.

FUTURE WORK

1) Extend the analysis to other High Density scenarios

2) Investigate detailed transport mechanisms