Transcript

-1-

Teil F: Input-Output-Rechnung

1. Einleitung

Die Input-Output-Rechnung liefert eine Darstellung der vielfältigen Bezugs- und Lieferverflechtungen

eines Wirtschaftsraums. Mit ihr lassen sich die Interdependenzen zwischen verschiedenen Sektoren

einschließlich der möglichen Rückkoppelungseffekte herausarbeiten.

Im Rahmen der Input-Output-Rechnung wird unterschieden zwischen der deskriptiven Auswertung der

Input-Output-Tabelle und der Input-Output-Analyse, in der produktionstheoretische Modellannah-

men Berücksichtigung finden.

Die erste Input-Output-Tabelle wurde 1936 von W. Leontief veröffentlicht. Es war eine Tabelle für die

Volkswirtschaft der USA des Jahres 1919. Seitdem sind eine Vielzahl von internationalen, nationalen

und regionalen Tabellen erstellt worden.

-2-

2. Input-Output-Tabellen

Input-Output-Tabellen für die Bundesrepublik Deutschland

Für die BRD wurden bzw. werden nationale Tabellen vom Statistischen Bundesamt und den großen

Wirtschaftsforschungsinstituten erstellt:

Statistsches Bundesamt: I-O-Tabellen mit 58 Produktionsbereichen und 58 Gütergruppen für die Jahre

1978, 1980, 1982, 1984, 1985, 1986, 1987, 1988, 1991, 1993, 1997, 1999 (wird 2003 veröffentlicht).

Ifo-Institut: I-O-Tabellen mit 62 Produktionsektoren für 1961-64

RWI: I-O-Tabellen mit 51 Produktionssektoren für 1960-1978

DIW: I-O-Tabellen mit 56 Produktionssektoren für 1962, 1967, 1972, 1976 und 1980

Auch im Statistischen Amt der Europäischen Gemeinschaft (EUROSTAT) werden I-O-Tabellen erstellt.

-3-

Aufbau einer Input-Output-Tabelle Ausgangspunkt der Darstellung ist ein sektorales Produktionskonto (z.B. des Industriesektors 2), auf

dem die Entstehung der Produktion und ihre Verwendung, sichtbar werden:

Produktionskonto Sektor 2

Vorleistungskäufe Vorleistungsverkäufe

von Sektor 1 V12 an Sektor 1 V21

von sich selbst V22 an sich selbst V22

von Sektor 3 V32 an Sektor 3 V23

von Sektor n

Vn2

an Sektor n

V2n

Kauf von Importgütern IM2 Verkauf von Konsumgütern C2

Ind. Steuern abzgl. Subv. T2 Verkauf von Investitionsgütern I2

Abschreibungen D2 Verkauf an das Ausland EX2

Löhne und Gehälter L2

Gewinne G2

Bruttoproduktionswert BPW2 Bruttoproduktionswert BPW2

-4-

Ordnet man die Entstehungsseite als Spalte und die Verwendungsseite als Zeile einer Matrix derart

an, daß der In-sich-Vorleistungsstrom den Schnittpunkt bildet, so ergibt sich folgendes Gleichungs-

kreuz:

V12

V21 V22 V23 � V2n C2 I2 EX2 BPW2

V32

Vn2

IM2

T2

D2

L2

G2

BPW2

-5-

Die folgende Abbildung zeigt diese Rechnung exemplarisch für eine Volkswirtschaft mit 3 Sektoren.

V11 V12 V13 C1 I1 EX1 BPW1

V21 V22 V23 C2 I2 EX2 BPW2

V31 V32 V33 C3 I3 EX3 BPW3

IM1 IM2 IM3

T1 T2 T3

D1 D2 D3

L1 L2 L3

G1 G2 G3

BPW1 BPW2 BPW3

-6-

Für den allgemeinen Fall mit n Sektoren erhält man dann folgendes Schema einer Input-Output-

Tabelle:

Xij

(Quadrant I) Si Yik

(Quadrant II) Yi Xi

Uj

Yk Y X

Plj

(Quadrant III) Pl

Pj P

Xj X

-7-

Entsprechend den 3 Quadranten lassen sich drei Teilmatrizen unterscheiden:

− die Vorleistungsmatrix (Quadrant I)

− die Endnachfragematrix (Quadrant II)

− die Primäraufwandsmatrix (Quadrant III)

Die Vorleistungsmatrix ist das Kernstück der Input-Output-Tabelle. Sie enthält die

Vorleistungslieferungen der n Sektoren untereinander.

Die Spaltensumme enthält den gesamten Vorleistungsverbrauch eines Sektors.

U xj iji

n=

=

1

Dieser wird auch als “intermediärer Input“ bezeichnet.

Die Zeilensumme weist den Teil der Produktion eines Sektors aus, der nicht an die Endnachfrage

geliefert wird, sondern als Vorleistungslieferung an alle anderen Sektoren.

S xi ijj

n=

=

1

Er wird auch als “intermediärer Output“ oder Zwischennachfrage bezeichnet.

-8-

Die Endnachfragematrix enthält die Lieferungen der n Produktionssektoren für den Endverbrauch. In

einer offenen Volkswirtschaft mit staatlicher Aktivität teilt sich die Endnachfragematrix in die Spalten:

privater Verbauch, Staatsverbrauch, Bruttoinvestitionen und Exporte auf. In Verbindung mit der

Vorleistungsmatrix beschreiben die Zeilen der Input-Output-Tabelle somit die Output-Struktur der

Sektoren. Der Gesamtoutput oder Bruttoprodutionswert Xi läßt sich als Summe aus

Zwischennachfrage Si (Vorleistungslieferungen) und Endnachfrage Yi darstellen:

S Y X S xi i i i ijj

n+ = =

=

mit 1

Die Primäraufwandsmatrix enthält die sogenannten “primären Inputs“, also Löhne und Gehälter,

Gewinne, Abschreibungen, Importe und indirekte Steuern abzüglich Subventionen. In Verbindung mit

der Vorleistungmatrix beschreiben die Spalten der Input-Output-Tabelle die Input-Struktur der

Sektoren. Der Gesamtinput Xj besteht aus empfangenen Vorleistungen Uj und primären Inputs Pj.

U P X U xj ljl

m

j j iji

n+ =

==

=

� �

1 1 mit Arten von primären Inputs und m

-9-

Input- Outputkoeffizienten und Vorleistungsquote

Will man mit Hilfe der Input-Ouput-Tabelle Aussagen über die wirtschaftliche Verflechtung der

Sektoren innerhalb der betrachten Volkswirtschaft treffen, so sind die absoluten Werte der in der Input-

Output-Tabelle verbuchten Werte noch nicht sehr aussagekräftig. Deshalb ermittelt man, um den Grad

der industriellen Verflechtung oder den Anteil einer Primäraufwandskomponente am Gesamtinput bzw.

einer Endnachfragekomponente am Gesamtoutput der Sektoren feststellen zu können, sogenannte

Strukturkoeffizienten.

Informationen über die Entstehungs- bzw. Kostenstruktur der Produktion liefern die

Inputkoeffizienten:

ax

Xijij

j=

-10-

Setzt man die gesamten bezogenen Vorleistungen eines Sektors ins Verhältnis zu seinem gesamten

Input, so erhält man die Vorleistungsquote:

VQU

Xjj

j=

Die Verwendungs- bzw. Absatzstrukturen der Sektoren lassen sich durch die Outputkoeffizienten

beschreiben:

bx

Xijij

i

=

-11-

Illustration der Berechnung von Input- und Outputkoeffzienten sowie der Vorleistungsquote anhand

eines Zahlenbeispiel für eine 3-Sektoren Input-Output-Tabelle ohne Staat und Außenwirtschaft.

1 2 3 Ci Ii Xi

1 8 5 4 + 1 2 = 20

2 0 1 0 + 9 0 = 10

3 2 0 2 + 0 6 = 10

+ + +

Dj 3 2 2 1,2,3 : Sektoren

Lj 4 1 1 Ci : privater Konsum

Gj 3 1 1 Ii : Bruttoinvestitionen

= = = Di : Abschreibungen

Xj 20 10 10 Lj : Löhne und Gehälter

Gi : Gewinne

Xi : Bruttoproduktion

-12-

Berechnung der Inputkoeffizienten ax

Xijij

j=

������

������

und der Vorleistungsquote VQU

Xjj

j=

������

������

.

1 2 3 1 2 3

1 820 5

10 410 1 0,4 0,5 0,4

2 020 1

10 010 2 0 0,1 0

3 220 0

10 210 3 0,1 0 0,2

VQj 1020 6

10 610 VQj 0,5 0,6 0,6

Dj 320 2

10 210 Dj 0,15 0,2 0,2

Lj 420 1

10 110 Lj 0,2 0,1 0,1

Gj 320 1

10 110 Gj 0,15 0,1 0,1

Die Inputkoeffizienten lassen z.B. erkennen, daß die Produktion des Sektors 2 stark von den

Vorleistungen des Sektors 1 abhängt. So besteht 50% des Inputs von Sektor 2 aus Vorleistungen von

Sektor 1. Die niedrigste Vorleistungsquote mit 0,5 weist der Sektor 1 auf.

-13-

Bildung der Outputkoeffizienten bx

Xijij

i=

����

����

1 2 3 Ci Ii 1 2 3 Ci Ii

1 820 5

20 420 + 1

20 220 1 0,4 0,25 0,2 + 0,05 0,1

2 010 1

10 010 + 9

10 010 2 0 0,1 0 + 0,9 0

3 210 0

10 210 + 0

10 610 3 0,2 0 0,2 + 0 0,6

Die Outputkoeffizienten zeigen z.B., daß der größte Teil der Produktion von Sektor 1 (85%)

Vorleistung an andere Sektoren darstellt. Nur 15% des Outputs gehen an die Endnachfrage.

-14-

Prinzipien der Sektorenbildung

Neben der räumlichen und zeitlichen Abgrenzung, der Größe der Tabelle und der Erfassung und

Bewertung der Transaktionen - entweder nach der Input- oder nach der Outputmethode, je nachdem,

ob vorwiegend Kosten- bzw. Verbrauchsstatistiken oder aber Absatzstatistiken vorliegen - spielt das

Prinzip der Sektorenbildung eine wesentliche Rolle bei der Tabellenerstellung. Die beiden wichtigsten

Prinzipien der Sektorenbildung sind das funktionelle und das institutionelle Prinzip

Beim institutionellen Prinzip werden die Sektoren nach dem Schwerpunktprinzip gebildet, d.h. die

statistischen Einheiten (z.B. Unternehmen oder Betrieb) werden nach ihrem Hauptprodukt klassifiziert.

Mithin zielt das institutionelle Prinzip auf eine Erfassung der über den Markt laufenden Produktströme

ab (Marktverflechtungsprinzip).

Beim funktionellen Prinzip erfolgt die Aggregation dagegen nach Produkten oder homogenen

Produktgruppen. Hier wird z.B. für den Fall, daß ein Unternehmen zwei unterschiedliche Produktarten

herstellt, die Produktion auf zwei Wirtschaftssektoren aufgeteilt. Das Ziel dieses

-15-

Prinzips ist es somit alle, d.h. neben den über den Markt umgesetzten auch die unternehmensinterne

Produktströme, die den Markt nicht berühren, auszuweisen (Produktionsverflechtungsprinzip).

Der Vorteil des institutionellen Prinzips besteht darin, daß das benötigte Datenmaterial leichter

verfügbar ist. Die Daten aus der Gewinn- und Verlustrechnung können unmittelbar verwendet werden,

weil kein Zurechnungsproblem auftritt. Nachteilig ist jedoch, daß sich aufgrund des

Schwerpunktprinzips die Heterogenität der Transaktionen vergrößert, da viel Produkte trotz ihrer

Gleichartigkeit in verschiedenen Sektoren erfaßt werden.

Die Tabellen des Statistischen Bundesamtes, des RWI und des IFO-Instituts sind nach dem

funktionellen Prinzip, die Tabellen des DIW nach dem institutionellen Prinzip aufgebaut.

-16-

3. Input-Output-Analyse

Im Gegensatz zur deskriptiven Auswertung handelt es sich bei der Input-Output-Analyse um eine

modellmäßige Auswertung der Input-Output-Tabelle.

Bei den statischen Modellen wird die Zeit nicht explizit berücksichtigt. Die Rechnung bezieht sich zwar

auf einen Zeitraum; es wird aber nicht analysiert, wie sich der untersuchte Zustand aus den vorherigen

Perioden entwickelt hat.

Das offene statische Input-Output-Modell

Die größte Bedeutung hat das offene statische Leontief-Modell erlangt. Ihm liegen folgende Annahmen

zugrunde:

Es existiert eine lineare Technologie, d.h. in jedem Produktionssektor sind die Faktoreinsatzmengen

zu der jeweiligen Output-Menge proportional.

Der Output jedes Sektors ist homogen, bei sektoraler Heterogenität des Produktionsprogramms wird

die Produktionsmischung jedes Sektors als konstant angenommen.

-17-

Jeder Sektor hat ein von anderen Wirtschaftssektoren verschiedenes Produktionsverfahren.

Ein Teil der Nachfrage innerhalb des Gesamtsystems - die Endnachfrage - wird als autonom

angesehen

Ausgangspunkt ist eine linear-homogene Inputfunktion der Form

x a Xij ij j=

Wird diese Beziehung in das Input-Output-Schema einbezogen und nach der Endnachfrage Y

aufgelöst, so ergibt sich:

X a X a X a X Y

X a X a X a X Y

n n

n n n nn n n

1 11 1 12 2 1 1

1 1 2 2

− − − − =

− − − − =

� �

-18-

Man erhält somit die Grundgleichung des offenen statischen Leontief-Modells:

X A X Y

X

A

Y

− ⋅ =

=

=

=

mit: Vektor der Bruttoproduktion

Matrix der Inputkoeffizienten

Vektor der Endnachfrage

Interessiert das aufgrund einer Endnachfrage erforderliche Produktionsvolumen, so formt man obige

Gleichung nach X um und erhält:

( )X I A Y

I

= − ⋅

=

−1

mit Einheitsmatrix

Die Matrix ( )C I A= − −1 wird als „Leontief-Inverse“ bezeichnet.

− Die Elemente cij geben an, wieviel der Sektor i mehr produzieren muß, wenn sich die autonome

Nachfrage nach Gütern des Sektors j um eine Einheit erhöht.

-19-

− Die Summe ciji

n

=

1 der Elemente der Spalte eines Sektors j gibt an, was alle Sektoren (einschließlich j)

zusätzlich erzeugen müssen, wenn sich die autonome Nachfrage nach Gütern des Sektors j um eine

Einheit erhöht.

− Die Summe cijj

n

=

1 der Elemente der Zeile eines Sektors i gibt an, was Sektor i erzeugen muß, wenn

sich die autonome Nachfrage nach Gütern aller Sektoren um eine Einheit erhöht.

Im Beispiel:

( ) ( )Matrix der Input - Leontiefinverse

koeffizienten A I A I A− −

��

�����

��

�����

− −

��

�����

��

�����

��

������

��

�����

−1

04 05 04

0 01 0

01 0 0 2

0 6 05 04

0 0 9 0

01 0 08

182 101 0 91

0 111 0

0 23 013 136

, , ,

,

, ,

, , ,

,

, ,

, , ,

,

, , ,

Eine autonome Veränderung der Nachfrage nach Gütern des Sektors 1 erhöht die Produktion des

Sektors 1 um 1,82 Einheiten. Die Produktion des Sektors 2 bleibt unverändert, während sich die

Produktion des Sektors 3 um 0,23 Einheiten erhöht.

Die Lösung läßt sich auch als Potenzreihe darstellen:

-20-

Im Beispiel:

Zunächst führt in der ersten Runde die autonome Nachfrageerhöhung nach Gütern des Sektors 1 um

eine Einheit zu einer Erhöhung der Produktion in diesem Sektor um eine Einheit.

∆Y =

��

�����

��

�����

1

0

0

Zur Erhöhung der Produktion des Sektors 1 bedarf es jedoch Vorleistungen der anderen Sektoren.

Dieser Vorleistungsbedarf ergibt sich aus der Multiplikation der Matrix der Inputkoeffizienten mit der

dem Vektor der nachgefragten Mehrproduktion.

A Y⋅ =

��

�����

��

����� ⋅

��

�����

��

����� =

��

�����

��

�����∆

04 05 04

0 01 0

01 0 02

1

0

0

04

0

01

, , ,

,

, ,

,

,

Zur Ermittlung des für diese Produktion A Y⋅ ∆ notwendigen Vorleistungsbedarfs muß nun

entsprechend A Y⋅ ∆ mit der Matrix der Inputkoeffizienten multipliziert werden.

-21-

A Y A A Y2

04 05 04

0 01 0

01 0 02

04

0

01

02

0

006

⋅ = ⋅ ⋅ =

��

�����

��

����� ⋅

��

�����

��

����� =

��

�����

��

�����∆ ∆

, , ,

,

, ,

,

,

,

,

Will man nach dieser 3 Runde die Wirkung auf die Produktion messen, so braucht man bloß die drei

Ausdrücke ∆Y , A Y⋅ ∆ , A Y2 ⋅ ∆ zu addieren.

∆ ∆ ∆ ∆X Y A Y A Y= + ⋅ + ⋅ =

��

���

��

��� +

��

���

��

��� +

��

���

��

��� =

��

���

��

���

2

1

0

0

04

0

01

02

0

006

16

0

016

,

,

,

,

,

,

Die Gesamtwirkung auf die Produktion läßt sich dann verallgemeinert durch folgende Potenzreihe

formulieren

( )∆ ∆ ∆ ∆ ∆

∆ ∆

X Y A Y A Y A Y

X I A A A A Yn

gesamt

gesamt

= + ⋅ + ⋅ + ⋅ +

= + + + + + ⋅

2 3

2 3

Da, wie oben gezeigt wurde, ( )∆ ∆X I A Ygesamt = − ⋅−1 ,folgt:

( ) ( )I A I A A A An− = + + + + +−1 2 3 �

-22-

Die Zerlegung der Wirkung einer Endnachfrageänderung in einzelne Produktionsschritte erlaubt die

Trennung in:

− die auslösenden Effekte (Veränderung der Endnachfrage ∆Y )

− die im ersten Schritt vom betroffenen Sektor weitergegebenen Effekte (direkte Vorleistungen A Y⋅ ∆ )

− die weiteren indirekten Effekte (indirekte Vorleistungen A Y A Y2 3⋅ + ⋅ +∆ ∆ � )

-23-

Kritik am offenen statischen Leontief-Modell:

− Konstanz der Inputkoeffizienten

− Nichtbeachtung von Kapazitätsauslastung, Lagerentwicklung, Arbeitszeit

− keine Berücksichtigung von Muliplikator- und Akzeleratoreffekten

− exogene Vorgabe der Endnachfrage

Diese Kritik, insbesondere der an der Annahme der Strukturkonstanz, versuchte man durch die

Weiterentwicklung der Input-Output-Analyse zu begegnen. Dazu entwickelte man Input-Output-

Modelle mit Koeffizientenanpassung, die dazu dienen, wertvolle Informationen - z.B. über einzelne

Randdaten oder Entwicklungssprünge in einzelnen Wirtschaftssektoren -, die nach der Entstehung der

Basistabelle gesammelt werden konnten, in die Input-Output-Analyse einzubeziehen.

-24-

• Koeffizientenanpassungsmodelle

Koeffizienten-

anpassungsmodell

Verfahren Vorgehen

Einfach-proportionale Input-

Output-Modelle

PKK-Verf. Zeilenweise durchgeführte Korrektur der Leontief-Inversen

Doppelt-proportionale

Input-Output-Modelle

RAS-Ver., PKK 1-

Verf., MODOP Verf.

Zeilen- und spaltenweise durchgeführte Korrektur der Leontief-Inversen

Zufallsmodelle Annahme: Veränderung der Elemente der Koeffizientenmatrix zufällig

Schätzen der Korrekturmatrix mit Methode der kleinsten Quadrate

Lösung des Ansatzes mit Hilfe von Lagrange-Multiplikatoren

Koeffizienten-Trend-Modell KTM-Verf. Annahme: Änderung der Koeffizienten folgt einem Trend

Schätzen eines linearen Trends je Spalte mit Methode der kleinsten Quadrate

Resteverteilungsmodelle oft in Verbindung mit

KTM-Verf.

Vergleich der geschätzten Vorleistungszeilen- und spaltensummen mit

vorgegebenen Randdaten, Verteilung der Residuen mit Methode der kleinsten

Quadrate

Regressions- und

Programmierungsmodelle

Es wird die Abweichung von Basistabelle und folgenden Tabellen ermittelt und

diese anschließend durch Hinzuziehung von exogenen Variablen in einer

Regression erklärt.

-25-

Beispiel: PKK-Verfahren

Dieses Verfahren geht davon aus, daß sich die einzelnen Inputkoeffizienten einer Zeile proportional

zur Zeilensumme der Koeffizienten verändern. Dahinter steht die Annahme, einer gleichmäßig

wirkenden Substitution in allen Sektoren. Durch zeilenweise durchgeführte Korrekturen - dargestellt

durch ri - werden die Veränderungen der Inputstruktur von der Basisperiode t bis zur Bezugsperiode k

(Korrekturjahr) berücksichtigt.

a r aijk

i ijt= ⋅

Für die Berechnung der ri benötigt man zunächst die Quotienten

sit Si

t

X taij

t X jt

X t= =

bzw.: sS

X

a X

Xik i

k

kijk

jk

k= =

worin Sik und Si

t die i-te Zeilensumme des intermediären Outputs und X k und X t die

Bruttoproduktionswerte des Korrektur- bzw. Basisjahres darstellen.

-26-

Der Einfluß der Outputrelationen kann dadurch ausgeschaltet werden, daß die Bruttoproduktionswerte

des Basisjahres durch die des Korrekturjahres substituiert werden:

sa X

Xit ij

tjk

k

=

Der Korrekturfaktor lautet dann

rs

s

a X

a Xik i

k

it

ijk

jk

ijt

jk

= =∗

��

Somit ergibt sich für das Korrekturjahr folgendes Gleichungssystem:

X R A X Yk k t k k= ⋅ ⋅ +

( )X I R A Yk k t k= − ⋅ ⋅−1

mit

-27-

R

r

r

r

k

nn

=

��

�����������

��

�����������

11

22

0

0

� �

� �

Man sieht, daß sich bei diesem einfachen Koeffizientenverfahren die Einzelkoeffizienten einer Zeile

der Vorleistungsmatrix proportional zur Koeffizientensumme dieser Zeile verändern. Das

Gleichungssystem ist konsistent in den Zeilensummen, nicht aber in den Spaltensummen (→ doppelt-

proportionale Input-Output-Modelle).

-28-

Statische Input-Output-Modelle mit endogenisierter Endnachfrage

Um wirtschaftstheoretische Verhaltensannahmen, die ihre modellmäßige Abbildung z.B. in Konsum-

und Investitionsfunktionen finden, im Rahmen der Input-Output-Rechnung berücksichtigen zu können,

werden Input-Output-Modelle mit endogenisierter Endnachfrage entwickelt.

Bei Verwendung einfacher sektoraler Konsum- und Investitionsfunktionen zeigte sich, daß die Modelle

mit endogenisierter Endnachfrage höhere Produktionseffekte aufwiesen als das offene statische

Leontief-Modell. Dieses ist vor allem bei der Beurteilung staatlicher Maßnahmen, z.B. der

Durchführung von Konjunkturprogrammen, von Interesse.

-29-

Endogene Erklärung des privaten Konsums und der privaten Investitionen im Input-Output-

Modell:

Sektorale Konsumfunktion

C c Y gipr

i i= ⋅ + , i n= 1, ,�

mit::

Cipr : die von den privaten Haushalten konsumierten Güter aus dem Sektor i

Y: Volkseinkommen

ci: marginale Konsumquote

gi: Basiskonsum

Sektorale Investitionsfunktion

I d Y hipr

i i= ⋅ + i n= 1, ,�

mit

Iipr : die zur privaten Bruttoinvestition verwendeten Güter aus dem Sektor i

Y: Volkseinkommen

di: die nicht-negative marginale private Bruttoinvestitionsneigung

-30-

hi: autonome private Bruttoinvestitionen

Ausgangspunkt ist das statische offene Leontieff-Modell:

Budgetgleichung:

x C I C I Ex Xijj

n

ipr

ipr

ist

ist

i i=

+ + + + + =1

mit

Exi : Exporte aus dem Sektor i

Cist : die vom Staat konsumierten Güter aus dem Sektor i

Iist : die für staatliche Bruttoinvestitionen verwendeten Güter aus dem Sektor i

Es gilt folgende Inputrelation:

x a Xij ij j= ⋅

-31-

Einsetzen dieser Gleichung in die Budgetrestriktion ergibt:

( )e a X C I C I Exij ij jj

n

ipr

ipr

ist

ist

i− ⋅ = + + + +=

1

mit:

ei j

i jij =≠=

����

0

1

für

für

Lösung dieses Modells in Matrizenschreibweise:

( ) ( )X I A C I C I Expr pr st st= − + + + +−1

-32-

2 Weiterentwicklungen:

1. Version: Endogenisierung des privaten Konsums

Volkseinkommen ist die Summe aller Wertschöpfungen Wj :

Y Wjj

n=

=

1

Dabei gilt:

W X x M D Tj j iji

n

j j j= − − − −=

1

mit

M j : Importe

Dj : Abschreibungen

Tj : indirekte Steuern (abzüglich Subventionen)

-33-

Annahme: Die Wertschöpfung ist proportional zum Output.

W w Xj j j= ⋅

Einsetzen in die Budgetfunktion ergibt:

( )e a c w X g I C I Exij ij i j jj

n

i ipr

ist

ist

i− − ⋅ ⋅ = + + + +=

1

→ nur noch Basiskonsum ist exogen.

In Matrizenschreibweise ergibt sich:

( )( ) ( )I Z X g I C I Expr st st− ⋅ = + + + +1

mit:

( )Z

a c w

a c wn n

1

11 1 1

1 1

=

+ ⋅

+ ⋅

��

�������

��

�������

-34-

Lösung des Modells:

( )( ) ( )X I Z g I C I Expr st st= − + + + +−1 1

2. Version: Private Bruttoinvestitionen werden endogenisiert

( )( )e a c d w X g h C I Exij ij i i j jj

n

i i ist

ist

i− − + ⋅ ⋅ = + + + +=

1

In Matrizenschreibweise:

( )( ) ( )I Z X g h C I Exst st− ⋅ = + + + +2

mit:

( )

( )

( )Z

a c d w

a c dn wn n

2

11 1 1 1

1 1

=

+ + ⋅

+ + ⋅

��

�������

��

�������

Lösung des Modells:

( )( ) ( )X I Z g h C I Exst st= − + + + +−2 1

-35-

Dynamische Input-Output-Modelle

Die dynamischen Input-Output-Modelle unterscheiden sich von den statischen durch die explizite

Berücksichtigung der Zeit. Dieses ist eine wichtige Erweiterung, da die Abhängigkeiten zwischen

machen Variablen nur mit Hilfe von „leads“ oder „lags“ dargestellt werden können.

Das dynamische Input-Output-Modell beinhaltet durch die Berücksichtigung des Kapazitätseffekts

der Investition die Endogenisierung eines Teils der Endnachfrage. Die Grundgleichung des offenen

statischen Leontieff-Modells:

X A X Y= ⋅ +

wird modifiziert zu

X A X I Yn= ⋅ + + ∗

mit::

I n : Nettoinvestitionen

Y∗: Spaltenvektor der Endnachfrage abzüglich der Nettoinvestitionen

-36-

Ist ( )K tij der Bestand des Sektors j an Kapitalgütern aus dem Sektor i zur Beginn der Periode t,

dann gilt für die Nettoinvestitionen:

( ) ( ) ( )I t K t K tijn

ij ij= + −1

Es wird deutlich, daß durch die Berücksichtigung des Kapazitätseffektes eine Dynamisierung des

Gleichungssystems erreicht wurde.


Top Related