produktionstheorie ||

324

Upload: marion

Post on 27-Mar-2017

283 views

Category:

Documents


43 download

TRANSCRIPT

Page 1: Produktionstheorie ||
Page 2: Produktionstheorie ||

Steven' Produktionstheorie

Page 3: Produktionstheorie ||

DIE WIRTSCHAFTSWISSENSCHAFTEN

Horst Albach (Hrsg.)

Marion Steven

Produktions­theorie

Page 4: Produktionstheorie ||

Prof. Dr. Marion Steven lehrt Wirtschaftswissenschaft auf dem Lehrstuhl rur angewandte BWL I (produktionswirtschaft) an der Ruhr-Universitat Bochum.

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Die Wirtschaftswissenschaften 1 Horst Albach (Hrsg.) - Wiesbaden : Gabler Steven, Marion: Produktionstheorie. - 1998

Steven, Marion: Produktionstheorie 1 Marion Steven. - Wiesbaden : Gabler, 1998

(Die Wirtschaftswissenschaften)

ISBN-13: 978-3-409-12930-5 e-ISBN-13 : 978-3-322-84571-9

DOl: 10.1007/978-3-322-84571-9

Aile Rechte vorbehalten

© Betriebswirtschaftlicher Verlag Dr. Th. Gabler GmbH, Wiesbaden 1998 Lektorat: Ralf Wettlaufer

Der Gabler Verlag ist ein Untemehmen der Bertelsmann Fachinformation.

Das Werk einschlieBlich aller seiner Teile ist urheberrechtlich geschtitzt. Jede Verwertung auBerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Veri ages unzulassig und strafbar. Das gilt insbesondere flir Vervieif<i1tigungen, Ubersetzungen, Mikroverfilmungen und die Einspeiche­rung und Verarbeitung in elektronischen Systemen.

http://www.gabler-online.de

Hochste inhaltliche und technische Qualitat unserer Produkte ist unser Ziel. Bei der Produktion und Auslieferung unserer Bticher wollen wir die Umwelt schonen: Dieses Buch ist auf saurefreiem und chlorfrei gebleichtem Papier gedruckt.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daB solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten waren und daher von jedermann benutzt werden diirften.

Page 5: Produktionstheorie ||

Vorwort

Da die Produktion als Vorgang der betrieblichen Leistungserstellung nach wie vor eine zentrale Stellung unter den betrieblichen Funktionen einnimmt, stellt die Produktionstheorie einen wesentlichen Teilbereich der Betriebswirtschaftslehre dar. Als Produktion wird hier in der Denkweise von ERICH GUTENBERG der gii­terwirtschaftliche ProzeB der Kombination von Inputgiitem und ihrer Transfor­mation in Outputgiiter verstanden, der sich auf unterschiedliche Weise und mit unterschiedlichem Detaillierungsgrad darstellen laBt. Gegenstand der Produk­tionstheorie ist die Untersuchung und Darstellung von grundlegenden Zusam­menhangen dieses Produktionsprozesses, die als Basis ffir weitergehende pro­duktionswirtschaftliche Entscheidungen genutzt werden konnen. Aus ihren Ur­sprUngen in volkswirtschaftlichen, insbesondere mikrookonomischen Betrach­tungen hat sich seit der Mitte dieses J ahrhunderts die stiirker an der detaillierten Darstellung von realen Sachverhalten ausgerichtete betriebswirtschaftliche Pro­duktionstheorie mit zahlreichen Ansiitzen entwickelt.

Wiihrend in aktuellen produktionswirtschaftlichen Veroffentlichungen die Pro­duktionstheorie hiiufig als Einleitung zu eher ablauforientierten Ausfiihrungen verkiimmert, steht in diesem Buch ihre eigenstandige Bedeutung als Grundlagen­disziplin im Vordergrund. Es werden die wesentlichen Entwicklungslinien der betriebswirtschaftlichen Produktionstheorie bis hin zum heutigen Stand der For­schung anhand von ausgewiihlten Modellen nachgezeichnet, Beziehungen zwi­schen den einzelnen Ansiitzen aufgezeigt und grundlegende Mechanismen und GesetzmaBigkeiten herausgearbeitet. Den Schwerpunkt der Betrachtungen bildet dabei die Fertigungsindustrie; soweit moglich, werden Beziige zur prozeBtechni­schen Industrie sowie zur Produktion von Dienstleistungen aufgezeigt.

Dabei werden folgende Leitideen verfolgt: Die im Zuge der Entwicklung der Produktionstheorie immer stiirkere Berucksichtigung des Zeitablaufs der Produk­tion wird systematisch nachgezeichnet. Die seit den achtziger J ahren diskutierte Einbeziehung von Aspekten des Umweltschutzes in produktionstheoretische Mo­delle bildet einen weiteren Schwerpunkt der Ausfiihrungen. Ihre Darstellung er­folgt als Erweiterung der bekannten Modelle und nicht in einem separaten Kapi­tel, urn die Integration in das produktionswirtschaftliche Basiswissen zu unter­stiitzen. SchlieBlich wird an etlichen Stellen der Bruckenschlag von der Produk-

Page 6: Produktionstheorie ||

VI Vorwort

tionstheorie zu ihrer Anwendung in der Produktionsplanung gesucht. Ko­stenaspekte flie8en immer dort in die Ausfiihrungen ein, wo sie zu ihrer Abrun­dung erforderlich sind; auf eine systematische Verknfipfung von Produktions­und Kostentheorie wird jedoch verzichtet.

Entsprechend dieser Zielsetzung wurde der folgende Aufbau gewahlt: 1m ersten Kapitel erfolgt zunachst die Einfiihrung von Grundbegriffen, die ffir das Ver­standnis der nachfolgenden Ausfiihrungen benotigt werden. Weiter wird ein sy­stematischer Uberblick fiber Arten von Produktionsmodellen sowie fiber die Ent­wicklung der Produktionstheorie gegeben. Gegenstand des zweiten Kapitels sind die ertragsgesetzlichen Produktionsfunktionen, anhand derer sich die Ursprtinge der Produktionstheorie aufzeigen und grundlegende GesetzmaBigkeiten herausar­beiten lassen. Hierzu wird neben der klassischen und der neoklassischen Produk­tionsfunktion auch die lineare Aktivitiitsanalyse gezahlt, da sich mit Hilfe geeig­neter Annahmen Technologien konstruieren lassen, die ertragsgesetzliche Verlau­fe aufweisen.

1m dritten Kapitel werden mit den aufeinander autbauenden Ansatzen der Theo­rie der Anpassungsformen von GUTENBERG, der HEINEN-Produktionsfunktion und der betriebswirtschaftlichen Input/Output-Analyse die bekanntesten be­triebswirtschaftlichen Ansatze der Produktionstheorie behandelt, die sich ver­starkt auf die Abbildung von Details des betrieblichen Geschehens ausrichten. Das vierte Kapitel befaSt sich mit dynamischen Ansatzen der Produktionstheorie. Bei kurzfristiger Betrachtung sind die auf dem betriebswirtschaftlichen In­put/Output-Modell autbauenden Produktionsfunktionen von KOPPER und MATIHES von Bedeutung; bei langfristiger Betrachtung steht die Entwicklung der Produktionsmoglichkeiten eines Untemehmens im Zeitablauf im Vorder­grund.

1m ffinften Kapitel werden mit der strukturalistischen Produktionstheorie von ZELEWSKI, der Theorie unscharfer Produktionsfunktionen und der Theorie der Dienstleistungsproduktion ausgewahlte neuere Entwicklungen der Produktions­theorie vorgestellt, die gleichzeitig Ansatzpunkte fUr die weitere produktions­theoretische Forschung aufzeigen. Die Literaturbelege im Text sind bewuBt auf ein Minimum reduziert, urn den Leseflu8 nicht zu sehr zu storen. Daffir wurde das Literaturverzeichnis sehr ausffihrlich gehalten, so daB eine vertiefte Beschaf­tigung mit der Produktionstheorie ohne Schwierigkeiten erfolgen kann.

Das Buch wendet sich an Studierende der Wirtschaftswissenschaften und ver­wandter Studiengange sowie an interessierte Praktiker, die sich das Gebiet der

Page 7: Produktionstheorie ||

Vorwort vn

Produktionstheorie systematisch erschlieBen mochten. Es entspricht ungefiihr dem Umfang einer dreisttlndigen Lehrveranstaltung im Hauptstudium und kann auch als Begleitlelctiire Verwendung finden. Da die Produktionstheorie eine stark quantitative Ausrichtung aufweist, werden Grundkenntnisse an mathematischen Methoden, insbesondere im Bereich der Analysis in einer und mehreren Varia­bIen, der linearen Algebra und der linearen Programmierung, vorausgesetzt. Weitergehende Kenntnisse der parametrischen linearen Programmierung werden in einem Exkurs vermittelt.

An dieser Stelle mochte ich allen denen danken, die zur Entstehung dieses Bu­ches beigetragen haben. Hier sind vor allem die studentischen und wissenschaft­lichen Mitarbeiterinnen und Mitarbeiter zu nennen, die mir in den Jahren des Ent­stehens auf verschiedene Weise geholfen haben, insbesondere Frau Dr. KERSTIN BRUNS, Herrn Dr. SVEN BEHRENS und Herrn Dipl.-Kfm. OUVER KASTENS fUr ihre kritische Durchsicht des Manuskripts und zahlreiche fruchtbare Diskussio­nen. Mein Dank gilt auch allen Studierenden in Essen und Bochum, die durch ihre Fragen und Hinweise zur besseren Auswahl und Aufbereitung des Stoffs beigetragen haben. Meinem akademischen Lehrer KLAUS-PETER KISTNER schul­de ich Dank dafiir, daB er mein Interesse an der Produktionstheorie geweckt hat. Herrn Kollegen ALBACH danke ich fUr die Anregung zu dieser Arbeit. Bei Herrn Dr. ROSKI sowie Herrn WETTIAUFER yom Gabler-Verlag bedanke ich mich fiir die verlegerische Betreuung.

Marion Steven

Page 8: Produktionstheorie ||

Inhaltsverzeichnis

1. Einfiihrung ....................................................................................................... 1

1.1 Grundbegriffe .................................................................................................... 1 1.1.1 Produktion und Produktionsfaktoren ............................................................. 1 1.1.2 Produktionsfunktionen und Produktionskorrespondenzen ............................ 5 1.1.3 Messen und Bewerten .................................................................................... 7 1.1.4 Effizienz und Produktivitiit ............................................................................ 9

1.2 Systematisierung von Produktionsmodellen ................................................... 13 1.2.1 Anzahl der Produktionsfaktoren und Produkte ............................................ 13 1.2.2 Komplexitiit des Produktionsprozesses ........................................................ 15 1.2.3 Substitutionalitat und Limitationalitiit ......................................................... 17 1.2.4 Erfassung des Zeitablaufs der Produktion ................................................... 20

1.3 Entwicklung der Produktionstheorie ............................................................... 21

2. Ertragsgesetzliche Produktionsfunktionen ............................................ 25

2.1 Die klassische Produktionsfunktion ................................................................ 25 2.1.1 Ausgangspunkt. ............................................................................................ 25 2.1.2 Die Produktionsfunktion .............................................................................. 27 2.1.3 Die Kostenfunktion ...................................................................................... 31 2.1.4 Beurteilung der klassischen Produktionsfunktion ....................................... 34

2.2 Die neoklassische Produktionsfunktion .......................................................... 36 2.2.1 Eigenschaften der neoklassischen Produktionsfunktion .............................. 36 2.2.1.1 Totale Faktorvariation ............................................................................... 38 2.2.1.2 Partielle Faktorvariation ............................................................................ 42 2.2.1.3 Isoquante ................................................................................................... 45 2.2.1.4 Typen neoklassischer Produktionsfunktionen ......................................... .49 2.2.2 Produktionsplanung im Rahmen der neoklassischen Produktionstheorie ... 51 2.2.2.1 Kostenminimierung ................................................................................... 51 2.2.2.2 Gewinnmaximierung ................................................................................. 57 2.2.3 Geltungsbereich der neoklassischen Produktionsfunktion .......................... 60

Page 9: Produktionstheorie ||

x Inhaltsverzeichnis

2.3 Die lineare Aktivitatsanalyse .......................................................................... 62 2.3.1 Grundbegriffe ............................................................................................... 63 2.3.1.1 Proportionalitat ......................................................................................... 64 2.3.1.2 Additivitat ................................................................................................. 68 2.3.1.3 Moglichkeit der Verschwendung .............................................................. 71 2.3.1.4 Lineare Technologien ................................................................................ 71 2.3.1.5 Exkurs: Grundbegriffe der parametrischen linearen Programmierung ..... 74 2.3.2 Analyse der Produktionsfunktion ................................................................. 78 2.3.2.1 Totale Faktorvariation ............................................................................... 78 2.3.2.2 Einproduktfall ........................................................................................... 79 2.3.2.2.1 Produktionsfunktion bei partieller Faktorvariation ................................ 80 2.3.2.2.2 Faktoreinsatzfunktion ............................................................................ 84 2.3.2.2.3 Isoquante ................................................................................................ 85 2.3.2.3 Mehrproduktfall ........................................................................................ 87 2.3.2.4 Berticksichtigung von Umweltglitern ....................................................... 90 2.3.2.4.1 Problemstellung ..................................................................................... 90 2.3.2.4.2 Lineare Technologie mit Umweltglitern ................................................ 93 2.3.2.4.3 Darstellung verschiedener ProzeBtypen ................................................. 95 2.3.2.4.4 Analyse einer linearen Technologie mit Umweltglitern ........................ 97 2.3.2.4.5 Bedeutung von Umweltglitern ............................................................. 1 04 2.3.3 Produktionsplanung im Rahmen der linearen Aktivitatsanalyse ............... 106 2.3.3.1 Kostenminimierung ................................................................................. 106 2.3.3.2 Gewinnmaximierung ............................................................................... 113 2.3.3.3 Verallgemeinerung .................................................................................. 116 2.3.4 Beurteilung der linearen Aktivitatsanalyse ................................................ 119

3. Betriebswirtschaftliche Produktionsfunktionen ................................. 125

3.1 Die GUTENBERG-Produktionsfunktion ......................................................... 126 3.1.1 Grundbegriffe ............................................................................................. 127 3.1.1.1 Ausgangspunkt. ....................................................................................... 127 3.1.1.2 Anpassungsformen .................................................................................. 129 3.1.1.3 Verbrauchsfunktion und Faktoreinsatzfunktion ..................................... 131 3.1.1.4 Technologiemenge der GUTENBERG-Produktionsfunktion .................... 134 3.1.2 Kostenverlaufe bei den einzelnen Anpassungsformen .............................. 134 3.1.2.1 Zeitliche Anpassung ................................................................................ 135

Page 10: Produktionstheorie ||

Inhaltsverzeichnis XI

3.1.2.2 Quantitative Anpassung .......................................................................... 138 3.1.2.3 IntensitatsmaBige Anpassung .................................................................. 143 3.1.3 Wahl der Anpassungsformen ..................................................................... 150 3.1.3.1 Quantitative Anpassung oder Oberstunden ............................................ 151 3.1.3.2 Zeitliche oder intensitatsmaBige Anpassung .......................................... 153 3.1.3.3 Intensitatssplitting ................................................................................... 156 3.1.3.4 Kostenminimaler Anpassungspfad ......................................................... 157 3.1.4 Beriicksichtigung von Umweltschutzrestriktionen .................................... 158 3.1.4.1 Abgabensteuerung ................................................................................... 161 3.1.4.2 Auflagensteuerung .................................................................................. 165 3.1.4.3 Recycling ................................................................................................ 169 3.1.4.4 Ergebnisse ............................................................................................... 171 3.1.5 Beurteilung der GUTENBERG-Produktionsfunktion ................................... 172

3.2 Die HEINEN-Produktionsfunktion ................................................................. 173 3.2.1 Das Konzept der Elementarkombination ................................................... 174 3.2.1.1 Begriffsbestimmungen ............................................................................ 174 3.2.1.2 Typen von Elementarkombinationen ...................................................... 176 3.2.2 Die Erkliirung des Faktorverbrauchs einer Elementarkombination ........... 178 3.2.2.1 Verbrauch an Repetierfaktoren ............................................................... 178 3.2.2.2 Verbrauch an Potentialfaktoren .............................................................. 190 3.2.3 Die Wiederholungsfunktion ....................................................................... 192 3.2.3.1 Primiire Elementarkombinationen ........................................................... 192 3.2.3.2 Sekundiire Elementarkombinationen ...................................................... 198 3.2.3.3 Tertiiire Elementarkombinationen ........................................................... 199 3.2.4 Aufstellung der Produktions- und Kostenfunktion .................................... 200 3.2.5 Beurteilung der HEINEN-Produktionsfunktion ........................................... 201

3.3 Die betriebswirtschaftliche Input/Output-Analyse ....................................... 202 3.3.1 Ausgangspunkt. .......................................................................................... 202 3.3.2 Darstellungsformen der Input/Output-Analyse .......................................... 203 3.3.2.1 Input/Output-Graphen und -Matrizen ..................................................... 204 3.3.2.2 Gleichungssystem ................................................................................... 208 3.3.2.3 Transformationsfunktionen ..................................................................... 21 0 3.3.3 Anwendung der Input/Output-Analyse ...................................................... 212 3.3.3.1 Produktionsmodell .................................................................................. 212 3.3.3.2 Kostenmodell .......................................................................................... 216 3.3.4 Beurteilung der betriebswirtschaftlichen Input/Output-Analyse ............... 218

Page 11: Produktionstheorie ||

xn Inhaltsverzeichnis

4. Dynamische Produktionsfunktionen ..................................................... 219

4.1 Kurzfristige dynamische Produktionsfunktionen .......................................... 219 4.1.1 Die Produktionsfunktion von KOpPER ....................................................... 220 4.1.1.1 Ausgangspunkt ........................................................................................ 220 4.1.1.2 Grundmodell ........................................................................................... 221 4.1.1.3 Beispiel zur dynamischen Produktionsfunktion ..................................... 226 4.1.1.4 Erweiterungen ......................................................................................... 229 4.1.1.5 Beurteilung der Produktionsfunktion von KOPPER ................................ 230 4.1.2 Die Produktionsfunktion von MA1TIIEs .................................................... 232 4.1.2.1 Ausgangspunkt ........................................................................................ 232 4.1.2.2 Aufbau des Modells ................................................................................ 232 4.1.2.3 Beurteilung der Produktionsfunktion von MA1TIIES .............................. 235

4.2 Langfristige dynamische Produktionsfunktionen ......................................... 236 4.2.1 Das Putty-Clay-Modell .............................................................................. 236 4.2.2 Entwicklung der Produktionsmoglichkeiten im Zeitablauf ....................... 238 4.2.2.1 Ausgangspunkt ........................................................................................ 238 4.2.2.2 Technologiewahl ohne technischen Fortschritt ...................................... 241 4.2.2.3 Technologiewahl mit technischem Fortschritt bei allen

Einsatzfaktoren ...................................................................................... 243 4.2.2.4 Technologiewahl mit technischem Fortschritt bei einem

Einsatzfaktor .......................................................................................... 244 4.2.2.5 Technologiewahl bei Faktoreinsatzmengenbeschriinkungen .................. 245 4.2.2.6 Entwicklung der Technologiemenge im Zeitablauf ................................ 246

4.3 Weitere Ansatze der dynamischen Produktionstheorie ................................. 249

5. Neuere Entwicklungen der Produktionstheorie .................................. 251

5.1 Die strukturalistische Produktionstheorie ..................................................... 251 5.1.1 Die Formalsprache der strukturalistischen Produktionstheorie ................. 252 5.1.2 Beurteilung der strukturalistischen Produktionstheorie ............................. 255

5.2 Die Theorie unscharfer Produktionsfunktionen ............................................ 258 5.2.1 Unsicherheit in der Produktionstheorie ..................................................... 258 5.2.2 Hilfsmittel der unscharfen Produktionstheorie .......................................... 259 5.2.3 Unscharfe Input/Output-Analyse ............................................................... 263 5.2.4 Beurteilung der unscharfen Produktionstheorie ......................................... 267

Page 12: Produktionstheorie ||

Inhaltsverzeichnis xm

5.3 Die Theorie der Dienstleistungsproduktion .................................................. 268 5.3.1 Besonderheiten der Produktion von Dienstleistungen ............................... 269 5.3.2 Sichtweisen der Dienstleistungsproduktion ............................................... 274 5.3.3 Phasen der Dienstleistungsproduktion ....................................................... 275 5.3.3.1 Die Einsatzfaktoren der Dienstleistungsproduktion ............................... 276 5.3.3.2 Der TransformationsprozeB der Dienstleistungsproduktion ................... 279 5.3.3.3 Das Produkt der Dienstleistungsproduktion ........................................... 283 5.3.4 Beurteilung der Theorie der Dienstleistungsproduktion ............................ 285

6. Zusammenfassung und Ausblick ............................................................ 287

Literaturverzeichnis ...................................................................................... 289

Stichwortverzeichnis ...................................................................................... 305

Page 13: Produktionstheorie ||

1. Einfiihrung 1.1. Grundbegriffe 1.1.1 Produktion und Produktionsfaktoren

Der Gegenstand der betriebswirtschaftlichen Produktionstheorie ist die Analyse der Produktion als ProzeB der betrieblichen Leistungserstellung. Produktionspro­zesse treten in allen Bereichen der Wirtschaft auf; so unterscheidet man die land­und forstwirtschaftliche Produktion, die handwerkliche Produktion, die industri­elle Produktion und die Dienstleistungsproduktion jeweils in ihren vielfaItigen Erscheinungsformen.

Abbildung 1 zeigt die Einbettung der Produktion in den - stark vereinfacht darge­stellten - betrieblichen Kreislauf von Geld und Giitem.

Die Produktion ist der Kembereich des betrieblichen Transformationsprozesses, ihr sind die giiterwirtschaftlichen Funktionen der Beschaffung und des Absatzes vor- bzw. nachgelagert. Wahrend die Beschaffung die Aufgabe hat, die Produk­tion mit den fUr die Leistungserstellung benotigten Produktionsfaktoren zu ver­sorgen, iibernimmt der Absatz die Verwertung der betrieblichen Leistungen am Absatzmarkt. Die Giiterwirtschaft steht innerbetrieblich in Beziehung zur Unter­nehmensfiihrung, von der sie Vorgaben beziiglich des Produktionsprogramms und der Produktionsbedingungen erhaIt, und zur Finanzwirtschajt, die die zur Uberbriickung des zeitlichen Ablaufs der Produktion erforderlichen liquiden Mittel durch Austausch mit dem Finanzmarkt bereitstellen muB. Das Untemeh­men ist weiter eingebettet in seine Umwelt, mit der es in vielfliltigen Austausch­beziehungen steht: Die gesellschaftliche Umwelt setzt die Rabmenbedingungen, innerhalb derer die betrieblichen Vorgange ablaufen miissen, die natiirliche Um­welt dient als Aufnabmemedium ffir AbfaIle, die in allen Phasen der giiterwirt­schaftlichen Transformation entstehen; schlieBlich sind die Markte, mit denen das Untemehmen in Austauschbeziehungen steht, ein Teil seiner relevanten Umwelt.

Die Aufgabe der Produktion besteht in der Kombination von Produktionsfaktoren und ihrer Transformation in materielle Giiter und Dienstleistungen als Produkte. Die in die Produktion eingehenden Giiter bzw. Produktionsfaktoren werden auch als Inputgiiter oder als Ressourcen bezeichnet, die bei der Produktion entstehen­den Giiter als Outputgiiter oder Produkte.

Page 14: Produktionstheorie ||

~ ......

t::D

(l) S. g g: ~ ~ '" ~ ....,

Bes

chaf

fimgs

-m

arlc

t

4~

UM

WE

LT

....

....

....

....

.. ~~~~ ...

....

. •

• •

• •

Unt

emeh

men

sfiih

ruog

• •

• •

• •

• V

orga

ben

• •

• •

, r

• •

• I

G ii

t e

r wi r

t s

c h

aft

I •

I •

Produ1tti.on~,.,

P r

I [n

e ..

fa.k

:t9re

n ...

Bes

cbaf

Iung

...

Prod

uktio

n r+

A

bsat

z •

... •

I I

I I

I I

I I

• I

I •

I I

• • I

• A

bfal

l •

I •

I •

I G

eld

Fina

nzw

irtsc

haft

.... G

eld

.L

I "'"

• I

4~

• I

• •

BE

TR

IEB

._--

----

----

----

---

----

----

----

----

,r Fi

nanz

mar

kt

Abs

atz-

mar

lct .... ....

tv

.... ~

~

;:s- ~

Page 15: Produktionstheorie ||

1.1 Grundbegriffe 3

Abbildung 2 steUt als Ausschnitt aus Abbildung 1 die Produktion als InputlOut­put-Beziehung dar, bei der eine Transformation von Produktionsfaktoren in mate­rieUe Guter und Dienstleistungen erfolgt.

INPUT OUTPUT

W k fi er sto e materielle Gilter ... . Betriebsmittel

.. .. Produktion Dienstleistungen Arbeitsleistung .. .. --

Abb. 2: Produktion als InputlOutput-Beziehung

Die Betriebswirtschaftslehre unterscheidet in Anlehnung an ERICH GUTENBERG [1951] drei Gruppen von elementaren Produktionsfaktoren anhand ihrer Funktio­nen im ProduktionsprozeB:

(1) Werkstoffe werden direkt bei der HersteUung der Produkte eingesetzt. Sie lassen sich gliedem in:

• Rohstoffe, die den Hauptbestandteil der Produkte bilden, z.B. Rohol, Erze, Holz, Glas, Wolle, aber auch vorgefertigte Zwischenprodukte und Bautei­Ie,

• Hilfsstoffe, die ebenfalls direkt in die Produkte eingehen, jedoch von un­tergeordneter Bedeutung sind, z.B. Leim, Schrauben oder Farben,

• Betriebsstoffe, die fUr den Betrieb der Maschinen benotigt werden und in-sofem indirekt in die Produkte eingehen, z.B. Schmiermittel oder Energie.

Weitere gelaufige Bezeichnungen ffir die Werkstoffe, durch die die Tatsache, daB diese nach der Produktion Bestandteil der Produkte geworden sind und nicht mehr ffir weitere Verwendungen zur Verfilgung stehen, besser zum Ausdruck gebracht wird, sind die Begriffe Verbrauchsfaktoren, Repetierfak­toren oder Flow-Inputs. Da Werkstoffe in der Regel beliebig teilbar sind, lii.Bt sich ihr Verbrauch recht genau bestimmen und den Produkten zurechnen.1

1 In cler urspriinglichen Darstellung von GUTENBERG [1983], S. 3 f. werden die Betriebsstoffe noch zu den Betriebsmitteln gerechnet. Erst spilter hat es sich durchgesetzt, sie aufgrund ih­rer Eigenschaft als Verbrauchsfaktor den Werkstoffen zuzurechnen, vgl. z.B. KISTNER

[199;3a], S. 2; STEFFEN [1997], S. 17 ff.; DINKELBACH I ROSENBERG [1994], S. 9 f.

Page 16: Produktionstheorie ||

4 1. EinfUhrung

(2) Betriebsmiuel oder Anlagen dienen der Produktion indirekt durch die Abgabe von Verrichtungen. Man unterscheidet:

• abnutzbare Betriebsmiuel, deren Nutzungspotential sich im Zeitablauf er­schopft, z.B. Werkzeuge, Maschinen, Gebaude,

• nicht abnutzbare Betriebsmiuel, die nach ihrer Beteiligung am Produk­tionsprozeB unverandert fiir weitere Nutzungen zur Verftigung stehen, z.B. Grundsrucke und Katalysatoren. Allerdings ist unter dem Aspekt der Altla­stenproblematik fraglich, ob es sich bei Grundsrucken tatsachlich urn nicht abnutzbare Betriebsmittel handelt.

Da die Betriebsmittel nach der Herstellung eines Produkts fiir weitere Pro­duktionsvorgange eingesetzt werden konnen, werden sie auch als Bestands­faktoren, Potentialfaktoren oder Stock-Inputs bezeichnet. Aufgrund der Po­tentialeigenschaft der Betriebsmittel laBt sich ihr Einsatz den Produkten in der Regel nicht eindeutig zurechnen.

(3) Menschliche Arbeitsleistung hat als objektbezogene bzw. ausfiihrende Arbeit die Aufgabe, die im ProduktionsprozeB erforderlichen Verrichtungen zu er­bringen.

Die dispositive Arbeit hingegen umfaBt die Managementfunktionen der Planung, Steuerung und Kontrolle der betrieblichen Ablaufe. Durch modeme Formen der Arbeitsorganisation wie Automatisierung, Gruppenarbeit und Lean Production wird die personelle Trennung zwischen objektbezogenen und dispositiven Tatig­keiten allerdings immer mehr aufgehoben.

Das hier vorgestellte Produktionsfaktorsystem bildet die Grundlage der meisten produktionstheoretischen Untersuchungen, auch wenn es verschiedentlich erwei­tert und modifiziert worden ist (vgl. z.B. BLOECH [1993]). Eine wesentliche Ver­anderung hat es z.B. durch die von BUSSE VON COLBE und LABMANN eingefillrr­ten Zusatziaktoren erfahren. Darunter versteht man Leistungen des Staates, von Verbanden, Versicherungen, Kreditinstituten und sonstigen Dienstleistungsunter­nehmen, an die zwar Zahlungen geleistet werden, deren Mengengerust sich je­doch nicht eindeutig erfassen laBt (vgl. BUSSE VON COLBE/ LABMANN [1991], S. 83 f.). KERN stellt ein Produktionsfaktorsystem vor, das dariiber hinaus produk­tionsrelevante Informationen als Faktorart berucksichtigt (vgl. KERN [1992], S. 15 f.).

Bei der Betrachtung der an der Produktion beteiligten Giiterstrome ist zu beriick­sichtigen, daB die natiirliche Umwelt nicht nur auf der Output-, sondem auch auf

Page 17: Produktionstheorie ||

1.1 Grundhegriffe 5

der Inputseite der Produktion auftritt (vgl. STEVEN [1991], S. 512 f.). Dieser Tat­saehe wurde in der Produktionstheorie - wie uberhaupt in der Betriebswirt­sehaftslehre - uber lange Zeit Dieht Reehnung getragen, da Umweltgiiter, solange sie Dieht knapp waren, keinen Preis hatten und daher kein Gegenstand okonomi­scher Betraehtungen waren.

Wiihrend der Einsatz natiirlieher Ressoureen je naeh ihrem Charakter den Werk­stoffen oder den Betriebsmitteln zugerechnet werden kann, fungiert die natiirliehe Umwelt auf der Outputseite der Produktion als Aufnahmemedium fUr uner­wiinsehte ProduktionsrUekstande, Emissionen und AbfaIle aller Art, die als un­vermeidbare Kuppelprodukte bei der Erzeugung der gewiinsehten Guter und Dienstleistungen anfallen.

1.1.2 Produktionsfunktionen und Produktionskorrespondenzen

Bei der Abbildung der betriebliehen Leistungserstellung Dimmt die Produktions­theorie eine weitgehende Abstraktion von okonomiseh irrelevanten teehDisehen Einzelheiten vor. 1m Mittelpunkt ihrer Betraehtungen stehen die mengenmiiftigen Beziehungen von Faktoreinsatz und Ausbringung. Man bezeiehnet die Einsatz­mengen 'i der n in der Produktion eingesetzten Produktionsfaktoren mit dem Vektor r. und den zugehorigen n-dimensionalen Raum als Faktorraum 9t!:

r. = (rl ,r2 , ... ,rn ) E 9t!,

Die erzielten Ausbringungsmengen x j der m erzeugten Produkte werden mit dem Vektor ;!. und der zugehOrige m-dimensionale Raum als Giiterraum 9t~ bezeiehnet:

Dann lassen sieh die bei der Realisierung einer bestimmten Produktionsmoglieh­keit auftretenden Gutermengen zu einer Aktivitiit y zusammenfassen, die eine zuUi.ssige Transformation von Inputgiitem in Outputgiiter besehreibt:

Eine Abbildung des Faktorraums in die Potenzmenge des Guterraums, die jeder Einsatzmengenkombination die damit herstellbaren Ausbringungsmengenkombi­nationen zuordnet, bezeiehnet man als Produktionskorrespondenz F:

F: 9t! ~ P(9t~)

Page 18: Produktionstheorie ||

6 1. EinjUhrung

Bei dieser Art der Beschreibung von Produktionsalternativen tritt das Problem auf, daB die Zuordnung von Faktoreinsatzmengen zu Ausbringungsmengen nicht eindeutig ist. (Zu Produktionskorrespondenzen vgL z.B. JACOBSEN [1970].) Weiter beschreibt die Abbildung F auch so1che Produktionsmoglichkeiten, bei denen entweder Produktionsfaktoren verschwendet werden oder auf die mogliche Herstellung weiterer Produktionsmengen verzichtet wird. Daher ist einem Kon­zept der Vorzug zu geben, das sich auf die Beschreibung eindeutiger, effizienter Input/Ouput-Kombinationen beschrankt. (Eine exakte Definition des Effizienz­begriffs erfolgt in Abschnitt 1.1.4.)

Die Produktionsfunktion ordnet jeder Kombination von Faktoreinsatzmengen die damit maximal herstellbare Ausbringungsmenge zu. Graphisch ergibt sich die Produktionsfunktion, wie in Abbildung 3 fUr einen Schnitt durch die Ii Ix rEbene des Giiterraums dargestellt, als Rand des durch die Produktionskorrespondenz beschriebenen Bereichs. Wahrend durch die Produktionskorrespondenz der Fak­toreinsatzmenge rio samtliche zuUi.ssigen Ausbringungsmengen zwischen 0 und xj zugeordnet werden, gibt die Produktionsfunktion eindeutig die maximal her­stellbare Ausbringungsmenge xj an.

x~ J

L---------------------------~--------------~ri r? I

Abb. 3: Produktionskorrespondenz und Produktionsfunktion

Page 19: Produktionstheorie ||

1.1 GrundbegrijJe 7

1m MehrproduktfalllaBt sich die Produktionsfunktion nur in impliziter Form an­geben, da einer bestimmten Faktoreinsatzmengenkombination mehrere effiziente Ausbringungsmengenkombinationen zugeordnet sein konnen:

«1>: 9t~ x 9t!' ~ 9t

Je nachdem, welches der beteiligten Guter genauer analysiert werden soIl, laBt sich diese Funktion nach der entsprechenden Variable auf1osen. Man gelangt da­bei fUr die Produktionsfaktoren zu Faktoreinsatifunktionen:

Bei Aufiosen nach einzelnen Produktarten erhalt man Produktfunktionen:

1m Einproduktfall, d.h. es wird die Herstellung eines einzigen Produkts betrach­tet, entspricht die Produktfunktion einer Produktionsfunktion in expliziter Form, die die mit einer gegebenen Faktoreinsatzmengenkombination maximal erzielbare Ausbringungsmenge des Produkts angibt:

qJ: 9t~ ~ 9tl

x = qJ('i,r2, ... ,rn )

1.1.3 Messen und Bewerten

Eine wesentliche Voraussetzung fUr die Erfassung der an der Produktion betei­ligten Input- und Outputmengen ist ihre MejJbarkeit. FUr jede an der Produktion beteiligte Guterart muB eine Me8vorschrift existieren, die dem Faktoreinsatz bzw. der Ausbringung reelle Zahlen zuordnet, durch welche ihr Umfang angege­ben wird. Diese Messung erfolgt fUr die einzelnen Guterarten auf unterschiedli­che Weise:

• Der Einsatz der Werkstoffe laBt sich mit Hilfe von physikalischen GroBen wie Stiickzahlen, Gewichten oder Langen- und FUichenmaBen erfassen, bereitet al­so keine prinzipiellen Schwierigkeiten.

• Bei den Betriebsmitteln wiirde eine Messung anhand des Bestands die durch die Produktion erfolgende Reduzierung des Nutzungspotentials vemachUissi­gen. Eine Erfassung des Betriebsmitteleinsatzes anhand der Nutzung sto8t je-

Page 20: Produktionstheorie ||

8 1. EinfUhrung

doch auf meBtechnische Probleme: Die Messung der zeitlichen Inanspruch­nahme last auBer acht, daB bei unterschiedlichen Leistungsintensitiiten auch die Abnutzung schwankt; die formal korrekte Zuordnung eines der jeweiligen Nutzung entsprechenden Anteils am Gesamtnutzungspotential scheitert daran, daB dieses nicht eindeutig vorgegeben, sondern vielmehr von okonomischen Entscheidungen fiber Wartung, Reparatur und Ersatz der Anlage abhangig ist. Mit dem Problem der Messung des Betriebsmitteleinsatzes haben sich z.B. LUHMER [1975], S. 17 ff.; KLoOCK [1993], S. 253 ff. und KISTNER [1993a], S. 211 ff. auseinandergesetzt.

• Eher unproblematisch ist die Messung der eingesetzten Arbeitsleistungen, die entweder anhand der Arbeitszeit oder von Leistungseinheiten erfolgt. Auch ffir eingesetzte Dienstleistungen liegt in der Regel ein eindeutiges Mengengerfist vor.

• Ffir die erzeugten Gater und Dienstleistungen last sich ebenfalls ein eindeuti­ges Mengengerfist in Form von Stfickzahlen, Gewichten oder Langen- und FHichenmaBen angeben.

• Der Einsatz von Umweltgutem und die Inanspruchnahme der Aufnahmekapa­zitiit der natfirlichen Umwelt ffir AbfaJ.le und Schadstoffe last sich zwar ffir zahlreiche Gfiterarten eindeutig messen, eine exakte Erfassung erfolgt jedoch aus Kostengrfinden nur ffir die Gfiterarten, die wegen ihrer Knappheit oder Ge­fahrlichkeit bereits in das betriebliche Interesse gerfickt sind. Die nicht explizit erfaBten Umweltgfiter hingegen werden nach wie vor alsfreie Guter betrachtet (vgl. hierzu STEVEN [1994a], S. 68 ff.).

Durch eine Bewertung der eingesetzten und erzeugten Gfitermengen erhaIt man die Kosten der Produktion bzw. die damit erzielten EriOse. Die Differenz von Erlosen und Kosten ist der Gewinn, eine in okonomischen Modellen vielfach verwendete ZielgroBe. Voraussetzung fUr die Bewertung von Gfitermengen ist die Existenz eines Wertgerusts, das den einzelnen Gfiterarten Preise zuordnet:

• Ffir Werkstoffe, die laufend beschafft werden, sind in der Regel Marktpreise bekannt.

• Ais Preis ffir die Nutzung von abnutzbaren Betriebsmitteln sind Abschreibun­gen, die eine Verteilung der Anschaffungskosten auf die Nutzungsdauer vor­nehmen, oder Opportunitatskosten, die den entgangenen Nutzen bei Verwen­dung in der besten nicht mehr realisierten Alternative angeben, anzusetzen. Beide Konzepte stoBen auf die bereits erorterte Schwierigkeit, daB eine solche

Page 21: Produktionstheorie ||

1.1 Grundbegriffe 9

Zuordnung von unbekannten GroBen abhiingt und daher im voraus nicht exakt moglich ist. Ffir die Nutzung von nicht abnutzbaren Betriebsmitteln konnen die auf das gebundene Kapital entfallenden Zinsen angesetzt werden.

• Die Entlohnung der Arbeitskriifte erfolgt nach tariflich oder betrieblich verein­barten Lohnsatzen. Dabei kann es sich um Zeit-, Akkordlohn oder auch Prlimi­enlohn handeln.

• Bei den Produkten ist in der Regel bekannt, zu welchen Preisen sie sich am Markt absetzen lassen.

• Umweltguter zeichnen sich dadurch aus, daB ffir sie zum groBen Teil keine (eindeutigen) Preise existieren, da sie entweder immer noch als freie Giiter gelten oder ihre Inanspruchnahme mit ordnungspolitischen Instrumenten wie Auflagen und Einsatzmengenbeschriinkungen gesteuert wird. Wlihrend im er­sten Fall der Preis Null betragt, sind ffir innerbetrieblich knappe Giiter Oppor­tunitatskosten anzusetzen.

Sind sowohl das Mengen- als auch das Wertgeriist der Produktion bekannt, so lassen sich im Einproduktfall die Kosten einer bestimmten Ausbringungsmenge berechnen, indem man die Summe der mit den Faktorpreisen qi bewerteten Fak­toreinsatzmengen 1';, bildet:

n

K= Lqi'1';, i=l

Uber die Produktionsfunktion, die jeder Kombination von Faktoreinsatzmengen die damit maximal erzielbare Ausbringungsmenge zuordnet, laBt sich die Ko­stenfunktion herleiten. Diese gibt an, wie die Kosten der Produktion von der pro­duzierten Menge abhiingen, und lautet fUr den Einproduktfall:

K = K(x) mit: x = q>(1j,r2, ... ,rn )

1.1.4 Effizienz und Produktivitiit

Ein wichtiges Kriterium bei der Entscheidung iiber die Vorteilhaftigkeit von Pro­duktionsaltemativen 2'. = tr;::!) ist das Effizienzkriterium, das auch ohne Kenntnis von Preisen eine Ausscheidung technisch unterlegener (dominierter) Altemativen erlaubt. Die Effizienz von Produktionsaltemativen ist wie folgt definiert:

Page 22: Produktionstheorie ||

10 1. Einfilhrung

Eine Produktionsaltemative x.0 = (r0;:!O) ist effizient, wenn es keine andere Produktionsaltemative 1. = {r;:!) gibt, so daB gilt:

° ri ::;; Ii

° Xj ~ Xj

und

< r..o I

oder

X· > xq J J

i=1, ... ,n

j=1, ... ,m

fUr mindestens ein i

fUr mindestens einj

Eine Produktionsaltemative ist demnach effizient, wenn es unter den anderen Produktionsaltemativen keine Moglichkeit gibt, die Einsatzmenge eines Produk­tionsfaktors zu reduzieren oder die Ausbringungsmenge eines Produkts zu erho­hen, ohne gleichzeitig die Einsatzmenge eines anderen Faktors erhohen bzw. die Ausbringungsmenge eines anderen Produkts reduzieren zu miissen. Effizienz be­deutet also die Vermeidung von Verschwendung.

Die Ermittlung von effizienten Produktionsaltemativen erfolgt durch paarweisen Vergleich, bei dem die dominierten Altemativen sukzessiv ausgeschieden wer­den. Hierzu ist in Tabelle 1 ein Beispiel angegeben:

Tabelle 1: Vergleich von Produktionsaltemativen

II l l l l rl 1 2 2 2 1

r2 2 2 3 3 2

r3 3 3 4 4 5

xl 10 8 11 10 11

x2 12 12 13 13 14

Der Paarvergleich zeigt, daB die Produktionsaltemative y 2 von der Produktions­altemative y 1 dominiert wird, da sie bei gleichen Einsatz- bzw. Produktions­mengen aller anderen Giiter von der ersten Einsatzfaktorart eine Einheit mehr benotigt und von der ersten Produktart zwei Einheiten weniger liefert. Die Pro­duktionsaltemative y 3 hingegen, die von jeder Einsatzfaktorart eine Einheit mehr als die ProduktionsaItemative y 1 benotigt, wird nieht von dieser dominiert, da

Page 23: Produktionstheorie ||

1.1 Grundbegriffe 11

sie gleichzeitig von jeder Produktart eine Einheit mehr liefert. Ahnliches gilt fUr den Vergleich von Zl mit Z4 sowie Z5. Die bereits als ineffizient erkannte Produktionsalternative y 2 kann bei den weite­ren Vergleichen auBer acht gelassen werden. Beim Vergleich von Z3 mit Z4 er­weist sich die letztere Produktionsalternative als ineffizient, da sie bei gleichem Faktoreinsatz und gleicher Ausbringungsmenge der zweiten Produktart eine Ein­heit weniger von der ersten Produktart liefert. Zwischen den Produktionsalterna­tiven Z3 und Z5 la8t sich keine eindeutige Dominanzbeziehung erkennen, so daB beide effizient sind. Mit Hilfe des Effizienzkriteriums konnten die ursprUnglichen filnf Produktionsalternativen auf die drei effizienten Produktionsalternativen y l, Z3 und Z5 reduziert werden; es wurde also eine technische Vorauswahl vorge­nommen.

Eine eindeutige Reihung sowie die Auswahl einer "besten" Produktionsalternati­ve wird erst dann moglich, wenn man eine Zielsetzung vorgibt und eine entspre­chende Bewertung der Giiterarten vornimmt, d.h. in diesem Fall den Einsatzfak­toren Kosten und den Produktarten Erlose zuweist. Die Zielsetzung lautet dabei, den Gewinn als Differenz von Erlosen und Kosten zu maximieren. Wahlt man z.B. den Preisvektor p'= (1,1,1; 1, 1), so ergibt sich ffir die Produktionsalternati­ve y 1 ein Gewinn von 16, ffir y3 von 15 und ffir y5 von 17 Geldeinheiten, so daB -Z5 als die beste Produktion~alternative erscheirrt. ErhOht man hingegen den Preis der dritten Einsatzfaktorart auf 2 Geldeinheiten, so betragt der Gewinn 13 Geldeinheiten ffir y l, 11 Geldeinheiten ffir y 3 und 12 Geldeinheiten fiir y 5.

Nunmehr ist also die Produktionsalternative il mit dem hOchsten Gewinn ~r­bunden.

Wiihrend die Bewertung aufgrund der oben beschriebenen Schwierigkeiten bei der Zuordnung von Preisen haufig eine subjektive Komponente enthiilt, ist das Effizienzkriterium ein objektives Auswahlkriterium, dem sich jeder rational ent­scheidende Wirtschaftsteilnehmer anschlieBen muB. So kann sich keine der auf­grund des Effizienzkriteriums als ineffizient erkannten Produktionsalternativen bei irgendeinem Preissystem als vorteilhaft erweisen. Angenommen, eine Pro­duktionsalternative Z2 werde von der Alternative Zl dominiert, wobei die Uber­legenheit ohne Beschriinkung der Allgemeinheit bei dem Produktionsfaktor 1 auftrete. Dann muB filr jedes nicht-negative Preissystem l!. ~ Q mit PI > 0 gelten:

J!.' . i -!!.' ·Z2 > 0

Page 24: Produktionstheorie ||

12 1. Einfiihrung

Beweis: Laut Annahme gilt:

rl < r? ... 1 < r..2 'i - I

X ~ >X~ 1 - 1

¢:>

¢:>

¢:>

2 1 rl -ri >0

2 1 ri -ri ~O i= 2, ... ,n

X} -X; ~O j=l, ... ,m

n m PI . (1j2 _1jI ) + L Pi . ('i2 - 'iI) + L P j . (X} - X;) > 0 '---v------' i=2 j=I

>0 ' • " • ' ~O ~O

Das Effizienzkriterium kann als eine Formalisierung des okonomischen Prinzips angesehen werden, welches die Grundlage rationalen Handelns von Wirtschafts­teilnehmern bildet. Das okonomische Prinzip HiBt sich in zwei Auspdigungen formulieren:

(1) Ais Maximalprinzip beschreibt es die Aufgabe, mit einem vorgegebenen Mitteleinsatz einen moglichst hohen Zielerreichungsgrad zu realisieren.

(2) Beim Minimalprinzip hingegen wird versucht, einen vorgegebenen Zielerrei-chungsgrad mit einem moglichst geringen Mitteleinsatz zu realisieren.

Die Umsetzung des Maximalprinzips bedeutet fur die Produktion die Herstellung einer moglichst groBen Ausbringungsmenge mit vorgegebenen Faktoreinsatz­mengen, z.B. durch Reduktion von AusschuB oder Verschnitt; das Minimalprin­zip wird bei der Herstellung eines vorgegebenen Produktionsprogramms mit moglichst geringem Faktoreinsatz verfolgt, z.B. durch Verringerung von Durch­laufzeiten.

Eine weitere auf dem okonomischen Prinzip aufbauende Kennzahl zur Beurtei­lung der Vorteilhaftigkeit von Produktionsalternativen ist die Produktivitiit. Sie ist definiert als das Verhiiltnis von Ausbringungsmenge zu Faktoreinsatz:

X· Pji =_1

'i j = l, ... ,m; i = 1, ... ,n

Je groBer die ProduktiviUit Pji ist, desto mehr Ausbringung von Produkt j HiBt sich mit einer bestimmten Einsatzmenge des Faktors i erzielen, d.h. desto spar­samer erfolgt der Einsatz dieses Faktors. Mit Hilfe des technischen Fortschritts wird smndig versucht, die ProduktiviUit einzelner Produktionsfaktoren zu erho-

Page 25: Produktionstheorie ||

1.2 Systematisierung von Produktionsmodellen 13

hen. So ist es z.B. das Ziel von Rationalisierungsmaj3nahmen, den Produktions­faktor Arbeit durch Kapital zu ersetzen und damit die Arbeitsproduktivitiit zu steigem; durch MaBnahmen zur Energieeinsparung wird die Produktivitiit des Energieeinsatzes erhoht, durch Reduzierung von Abfall und Ausschu8 die Pro­duktivitiit des Werkstoffeinsatzes usw.

Der Kehrwert der Produktivitiit wird als Produktionskoeffizient aij bezeichnet:

i = 1, ... ,n; j = 1, ... ,m

Der Produktionskoeffizient gibt an, welche Einsatzmenge des Produktionsfaktors i erforderlich ist, urn eine Einheit des Produkts j herzustellen. Produktionskoeffi­zienten werden z.B. herangezogen, urn aus mehreren zur Auswahl stehenden Anlagen diejenige zu ermitteln, die einen als besonders wichtig erachteten Pro­duktionsfaktor am sparsamsten einsetzt.

1.2 Systematisierung von Produktionsmodellen Es existieren verschiedene Versuche, die bei der Produktion auftretenden Sach­verhalte zu systematisieren. An dieser Stelle wird ein Uberblick iiber einige we­sentliche Systematisierungsansiitze gegeben, urn dadurch dem Leser die Einord­nung der anschlie8end behandelten produktionstheoretischen Modelle zu er­leichtem. (Vgl. hierzu auch die Darstellung bei KNOLMAYER [1973]).

1.2.1 Anzahl der Produktionsfaktoren und Produkte

Eine erste Systematisierung von Produktionsmodellen ist moglich nach der An­zahl der betrachteten Produktionsfaktoren und Produkte. Je mehr Giiterarten ex­plizit erfaBt werden, desto mehr Dimensionen umfaBt das Planungsproblem und desto gro8er ist seine Komplexitiit. Einfache Ansiitze beschriinken sich daher zu­niichst auf die Betrachtung der Beziehungen zwischen einem Produktionsfaktor und einem Produkt. Dieser FallliiBt sich noch graphisch analysieren und ist damit eher der Anschauung zuganglich als komplexere Modelle. Auch der Drei-Giiter­Fall, bei dem entweder zwei Produktionsfaktoren und ein Produkt oder zwei Pro­dukte und ein Produktionsfaktor beteiligt sind, ist noch anschaulich darstellbar. Erst der allgemeine Fall von n Produktionsfaktoren und m Produkten erfordert notwendigerweise ein aufwendigeres analytisches Instrumentarium (vgl. WITT­MANN [1968], S. 11 ff.).

Page 26: Produktionstheorie ||

14 1. EinjUhrung

Konzentriert man sich auf die Produkte, so laBt sich zwischen der Einprodukt­und der Mehrproduktproduktion unterscheiden (vgl. BOHR [1967], S. 6 ff.). Wiih­rend bei der Produktion eines einzigen Produkts lediglich die fUr die Herstellung der gewtinschten Ausbringungsmenge optimale Faktorallokation zu bestimmen ist, sind bei der Mehrproduktproduktion zusatzlich die zwischen den Produkten bestehenden Interdependenzen in ihrer jeweiligen Auspragung zu beriicksichti­gen. Einen Uberblick tiber die verscbiedenen Typen der Mehrproduktproduktion gibt Abbildung 4 (vgl. KNOLMAYER [1973], S. 89).

Die Mehrproduktproduktion kann als verbundene oder unverbundene Produktion auftreten. Da bei der unverbundenen Produktion die Produktionssysteme ffir je­des einzelne Produkt unabhangig voneinander betrieben werden, treten hierbei keinerlei Interdependenzen auf. Bei der verbundenen Produktion lassen sich die alternative Produktion und die Kuppelproduktion unterscheiden. Die alternative Produktion ist dadurch charakterisiert, daB mehrere Produkte abwechselnd auf den gegebenen Produktionsanlagen gefertigt werden, bier stehen also Reihenfol­geprobleme im Vordergrund.

starre Kuppel­

produktion

Abb. 4: Mehrproduktproduktion

elastische Kuppel­

produktion

Bei der Kuppelproduktion bingegen werden aufgrund der technischen Bedingun­gen mehrere Produkte notwendigerweise gleichzeitig in einem Produktionsver-

Page 27: Produktionstheorie ||

1.2 Systematisierung von Produktionsmodellen 15

fahren erzeugt. Wahrend die starre Kuppelproduktion konstante Mengenverhalt­nisse der Produkte auf weist, lassen sich bei der elastischen Kuppelproduktion die Mengen der einzelnen Produkte in gewissen Grenzen durch eine entsprechende Steuerung des Produktionsprozesses beeinflussen. Die Kuppelproduktion gilt als typisch fUr prozeBtechnische Fertigungsverfahren, wie z.B. in der Chemieindu­strie. Beriicksichtigt man jedoch, daB im Grunde bei jeder Produktion AbfaIle und Schadstoffe als unerwiinschte Kuppelprodukte anfallen, so ist letztlich die Kuppelproduktion als der Regelfall anzusehen.

1.2.2 Komplexitiit des Produktionsprozesses

Nach der Komplexitiit des Produktionsprozesses selbst lassen sich die einstufige und die mehrstufige Produktion unterscheiden. Die mehrstufige Produktion ist der realistischere Fall; hierbei mtissen explizit die Lieferbeziehungen und sonsti­gen Abhangigkeiten zwischen den verschiedenen Produktionsstufen beriicksich­tigt werden. Die einstufige Produktion geht hingegen davon aus, daB sich die Transformation der Produktionsfaktoren in die Endprodukte in einem einzigen Schritt vollziehen liiJ3t. Einstufige Modelle lassen sich als Approximation der Realitiit verwenden, indem die Vorgange auf den verschiedenen Produktionsstu­fen entsprechend aggregiert werden.

Innerhalb der mehrstufigen Produktion unterscheidet man nach der Art, wie die auf den verschiedenen Produktionsstufen erzeugten Produkte miteinander ver­bunden sind, folgende Produktionsstrukturen:

(1) Lineare Produktionsstrukturen sind dadurch gekennzeichnet, daB ein Vor­produkt tiber mehrere Produktionsstufen bis zum Endprodukt immer weiter bearbeitet wird. Jede Produktionsstelle - mit Ausnahme der ersten und der letzten - hat somit genau einen Vorganger und N achfolger. Diesen in Abbil­dung 5 dargestellten Fertigungstyp bezeichnet man auch als Veredelungsfer­tigung.

Abb. 5: Lineare Produktionsstruktur

(2) Bei Montagestrukturen wird eine Reihe von Vorprodukten auf den verschie­denen Produktionsstufen mit unterschiedlichen Bearbeitungsaufgaben immer weiter zusammengesetzt, bis das Endprodukt entsteht. Dieser in Abbildung 6

Page 28: Produktionstheorie ||

16 1. Einfiihrung

dargestellte Fertigungstyp ist dadurch gekennzeichnet, daB eine Produktions­stelle mehrere Vorganger, aber nur einen Nachfolger haben kann.

Abb. 6: Montagestruktur

(3) Bei einer allgemeinen Produktionsstruktur wird keine Annahme hinsichtlich der Anzahl der Vorganger und Nachfolger einer Produktionsstelle gemacht; es sind vielmehr beliebige Lieferbeziehungen moglich, solange der Material­fluB ausschlieBlich in einer Richtung erfolgt. Ein Beispiel fiir diesen Ferti­gungstyp ist in Abbildung 7 dargestellt.

Abb. 7: Allgemeine Produktionsstruktur

Page 29: Produktionstheorie ||

1.2 Systematisierung von Produktionsmodellen 17

Abb. 8: Komplexe Produktionsstruktur

(4) Bei komplexen Produktionsstrukturen [vgl. hierzu KLoOCK [1969a]) sind dariiber hinaus auch zyklische Lieferbeziehungen zuUissig, d.h. ein Teil der erzeugten Giiter kann auf derselben oder einer fruheren Produktionsstufe zum Einsatz gelangen. Ein Beispiel fUr diesen insbesondere bei chemischen Pro­zessen auftretenden Fertigungstyp gibt Abbildung 8.

1.2.3 Substitutionalitiit und Limitationalitiit

Eine weitere Unterscheidung von Produktionsmodellen orientiert sich daran, ob und wie die Austauschbeziehungen zwischen den Produktionsfaktoren und den Produkten erfaBt werden. In diesem Zusammenbang bezeichnet man Ansatze, die von einer - zumindest begrenzten - Austauschbarkeit ausgehen, als substitutional und Ansatze, die auf starren Mengenrelationen aufbauen, als limitational (vgl. z.B. BUSSE VON COLBE I LABMANN [1991]. s. 104 ff.; KISTNER [1993c], Sp. 3416 f.; FANDEL [1996], S. 53 ff.).

Substitutionalitiit der Einsatzfaktoren liegt vor, wenn eine bestimmte Ausbrin­gung mit unterschiedlichen Kombinationen von Faktoreinsatzmengen erzeugt werden kann. Man unterscheidet die totale Substitutionalitiit, bei der ein Einsatz­faktor vollstandig durch einen anderen ersetzt werden kann, und die partie lie bzw. periphere Substitutionalitiit, bei der jeder Einsatzfaktor zumindest in gerin­gen Mengen erforderlich ist, urn eine positive Ausbringungsmenge herzustellen.

Page 30: Produktionstheorie ||

18 1. Einfilhrung

In Abbildung 9 sind diese beiden FaIle dargestellt. Der Kurvenzug x = x gibt jeweils die Menge aller moglichen Kombinationen der Produktionsfaktoren '1 und r2 an, mit denen die gewiinschte Ausbringungsmenge x hergestellt werden kann.

In der graphischen Darstellung ist die totaZe Substitutionalitiit dadurch gekenn­zeichnet, daB der Kurvenzug beide Faktorachsen beriihrt. Ein Beispiel fUr eine Produktionsfunktion mit totaler Substitutionalitat der Einsatzfaktoren ist der Funktionstyp:

Bei der partiellen Substitutionalitiit hingegen niihert sich der Kurvenzug den Faktorachsen asymptotisch an. Sie Hillt sich z.B. durch folgenden Funktionstyp beschreiben:

a) totale Substitutionalitat

Abb. 9: Substitutionalitat

b) partielle Substitutionalitat

Analog zu dieser faktorbezogenen Darstellung liegt Substitutionalitat auf der Ausbringungsseite vor, wenn sich mit einer vorgegebenen Kombination von Faktoreinsatzmengen unterschiedliche Ausbringungsmengenkombinationen reali­sieren lassen.

Limitationalitiit auf der Faktorseite ist gegeben, wenn sich eine bestimmte Aus­bringung aus technischen Griinden nur durch eine einzige effiziente Kombination von Faktoreinsatzmengen realisieren liiBt. Der Kurvenzug x = x besteht daher

Page 31: Produktionstheorie ||

1.2 Systematisierung von Produktionsmodellen 19

nur aus einem einzigen Punkt. Ein Mindereinsatz eines einzelnen Produktions­faktors hatte einen sofortigen Ruckgang der Ausbringungsmenge zur Folge, wah­rend eine zusatzliche Faktoreinheit zu keiner Ausbringungssteigerung fiihrt, so­lange nicht auch von den anderen Einsatzfaktoren zusatzliche Mengen zur Verfii­gung stehen.

Innerhalb der limitationalen Produktionsfunktionen unterscheidet man zwei FaIle, die in Abbildung 10 dargestellt sind: Bei linearer Limitationalitiit erfolgt die Ausdehnung der Produktion entlang eines Proze8strahls, auf dem konstante Pro­duktionskoeffizienten und konstante FaktoreinsatzmengenverhaItnisse gelten. Bei nichtlinearer Limitationalitiit hingegen ist zwar das VerhaItnis von Faktoreinsatz­und Ausbringungsmengen jeweils eindeutig determiniert, kann aber fUr unter­schiedliche Produktionsniveaus verschiedene Werte annehmen.

Lineare Limitationalitiit bedeutet, daB die Produktionspunkte fUr Ausbringungs­niveaus, die ein ganzzahliges Vielfaches der Ausbringungsmenge x darstellen, auf einem Proze8strahlliegen und g1eich weit voneinander entfemt sind. Ein Bei­spiel fUr lineare Limitationalitat ist die LEONTIEFF-Produktionsfunktion:

I

I

I I

/

I I

~ x=3'X I

!' x=2'X I

I x=x

a) lineare Limitationalitat

Abb. 10: Limitationalitat

I I

/(1) I

• x=3x I

I _ (2) !'x=2x

I - *- - - - -3-- - - x= x -* x=2x

x=x

b) nichtlineare Limitationalitat

Page 32: Produktionstheorie ||

20 1. EinjUhrung

Nichtlineare Limitationalitiit ist hingegen dadurch gekennzeichnet, daB entweder, wie in Fall (1), die Produktionspunkte zwar auf einem ProzeBstrahlliegen, aber die Abstiinde variieren, oder, wie in Fall (2), die Produktionspunkte nicht einmal auf einem ProzeBstrahl liegen. Sie laBt sich z.B. ffir Fall (2) durch folgenden Funktionstyp beschreiben:

Neben den hier dargestellten reinen Hillen sind durchaus gemischte Situationen denkbar, z.B. Limitationalitat bezuglich des einen und SubstitutionaliUit bezug­lich des anderen Produktionsfaktors oder partielle Substitutionalitat bezuglich des einen und totale Substitutionalitat bezuglich des anderen Produktionsfaktors.

1.2.4 Erfassung des Zeitablaufs der Produktion

SchlieBlich lassen sich Produktionsmodelle danach systematisieren, inwieweit sie die Tatsache bertlcksichtigen, daB die Produktion ein ProzeB ist, der sich im ZeitablauJ vollzieht. Abbildung 11 gibt einen Uberblick uber die in diesem Zu­sammenhang relevanten Modelltypen (vgl. auch KERN [1969], S. 343 ff.; SCHNEEWEffi [1988], S. 8 ff.; MAY [1992], S. 7 ff.). Grob lassen sich statische Modelle, die yom Zeitablauf abstrahieren, und dynamische Modelle, die ibn ex­plizit bertlcksichtigen, unterscheiden. Als Zwischenformen, die bestimmte Aspekte des Zeitablaufs einbeziehen, sind auch komparativ-statische und kineti­sche Modelle von Bedeutung.

Abb. 11: Zeitliche Struktur von Produktionsmodellen

Modelle, die lediglich die Produktionsverhaltnisse in einem bestimmten Zeit­punkt bzw. in einer Periode abbilden, heiBen statisch. Da sich samtliche Varia­bIen und Parameter auf denselben Zeitpunkt beziehen, ist kein Periodenindex erforderlich. Von der Tatsache, daB Produktionsvorgange Zeit beanspruchen,

Page 33: Produktionstheorie ||

1.3 Entwicklung der Produktionstheorie 21

wird abstrahiert, indem implizit eine unendliche Produktionsgeschwindigkeit an­genommen wird. Auch im Zeitablauf bestehende Interdependenzen von Varia­bIen und Parametem sowie deren Veranderungen werden nicht beriicksichtigt; vielmehr werden in einer ceteris-paribus-Betrachtung konstante Rahmenbedin­gungen unterstellt.

Einen ersten Schritt in Richtung Dynamisierung nehmen mehrperiodige oder komparativ-statische Modelle vor, die eine Abfolge von statischen Modellen fUr verschiedene Zeitpunkte bzw. Perioden darstellen. Die Variablen und Parameter der einzelnen Teilmodelle erhalten einen Zeitindex, so daB sich zeitorientierte Differenzengleichungen formulieren lassen, die die Auswirkungen von Entschei­dungen in der Periode t auf den Ausgangszustand der Periode t + 1 abbilden. Da sich lediglich die Zustande an den Periodengrenzen explizit im Modell beriick­sichtigen lassen, sind fUr die zwischenzeitlich ablaufenden Entwicklungen geeig­nete Annahmen zu treffen.

Ein kinetisches Modell basiert im Gegensatz zu den komparativ-statischen Mo­dellen nicht auf einer diskreten, sondem auf einer kontinuierlichen Abbildung des Zeitablaufs. Der Begriff der Kinetik stammt - ebenso wie die Statik und die Dy­namik - aus der Physik und bezeichnet dort die Lehre von den Bewegungen, die von einem bestimmten Impuls ausgelOst werden. Es wird die Entwicklung von einer oder mehreren abhangigen Variablen im Zeitablauf bei Konstanz der auf sie einwirkenden unabhangigen Variablen beschrieben.

In einem dynamischen Modell werden sowohl die Veranderungen von Variablen als auch die sie auslosenden Impulse analysiert. Es erfolgt wiederum eine konti­nuierliche Modellierung des Zeitablaufs, z.B. in Form von Differentialgleichun­gen. Zeitliche Einfliisse und Abhangigkeiten, wie Produktionsgeschwindigkeiten oder Reihenfolgebedingungen, lassen sich explizit abbilden. Die Entscheidungen in samtlichen Perioden des Planungszeitraums werden simultan unter Beriick­sichtigung ihrer Interdependenzen getroffen. Dabei hangen die Ergebnisse des Modell!; von der Lange des Planungszeitraums bzw. den dort geltenden Randbe­dingungen abo

1.3 Entwicklung der Produktionstheorie Die Urspriinge der im folgenden betrachteten Ansiitze der Produktionstheorie reichen bis in das 18. lahrhundert zuriick. Da es zu dieser Zeit noch keine Be­triebswirtschaftslehre als eigenstandige wissenschaftliche Disziplin gab, standen

Page 34: Produktionstheorie ||

22 1. Ein.fiihrung

bei den ersten produktionstheoretischen Ansatzen die volkswirtschaftlichen Aspekte im Vordergrund. In der Volkswirtschaftslehre bildet die Produktions­theorie einen Teil der Preistheorie (vgl. KRELLE [1969]).

Als erste produktionswirtschaftliche Betrachtung gilt die Formulierung des klas­sischen Ertragsgesetzes im Jahre 1766 durch JACQUES TURGOT, den Finanzmini­ster LUDWIGs XVI. Er untersuchte die Abhangigkeit des landwirtschaftlichen Ertrages vom Arbeitseinsatz bei Konstanz der bewirtschafteten Flache und er­kannte die GesetzmaBigkeit eines zunachst zunehmenden, dann abnehmenden Grenzertrags, die spater zur Grundlage der klassischen Produktionstheorie wurde. Ahnliche Untersuchungen wurden 1826 durch den preuBischen Gro8grundbesit­zer J. H. VON THONEN durchgefiihrt.

1m 19. Jahrhundert stand die Weiterentwicklung der Produktionstheorie auf der Basis des klassischen Ertragsgesetzes im Vordergrund. Aufbauend auf dem Stecknadelbeispiel ADAM SMITHs [1776] erkannte man das spater von BUnlER [1910] formulierte Gesetz der Massenproduktion, das es nahelegte, auch in der industriellen Produktion von einem Bereich zunehmender Ertragszuwachse bei partieller Variation eines Einsatzfaktors auszugehen. Aus der Kritik an dieser GesetzmaBigkeit entstand die neoklassische Produktionstheorie, die ausschlieB­lich abnehmende Grenzertrage unterstellt.

Erst im 20. Jahrhundert entwickelten sich eigenstandige betriebswirtschaftliche Ansatze zur Produktionstheorie. Aus der Kritik an der in der Klassik und Neo­klassik unterstellten Substitutionalitat von Produktionsfaktoren heraus entstanden Konzepte, die sich sUirker an den technischen Grundlagen der Produktion orien­tieren.

Aufbauend auf der von LEONTIEFF [1951] formulierten Umitationalen Produk­tionsfunktion, die ffir die industrielle Produktion von konstanten Produktions­koeffizienten ausgeht, wurde die Darstellung von produktionstheoretischen Zu­sammenhangen mit Hilfe der Unearen Aktivitiitsanalyse entwickelt (vgl. HILDENBRAND I HILDENBRAND [1975], KISTNER [1981]), durch die mit Hilfe der linearen Programmierung die Giiltigkeit der neoklassischen Aussagen ffir eine lineare Technologie nachgewiesen werden konnte.

Einen anderen Ansatzpunkt w8.hlten in den USA CHENERY [1949] mit seiner En­gineering Production Function und in Deutschland GUTENBERG [1951] mit der Theorie der Anpassungsformen. Beide versuchten, die am einzelnen Aggregat herrschenden technischen Produktionsbedingungen zu modellieren. So ging GUTENBERG davon aus, daB die Ausbringungsmenge nicht direkt von den Fak-

Page 35: Produktionstheorie ||

1.3 Entwicklung der Produktionstheorie 23

toreinsatzmengen abhangt, sondem mittelbar tiber die Leistungsabgabe und die Einsatzweise der Aggregate beeinfluBt wird. Wahrend er bei einer Variation der Einsatzzeit und der Anzahl der eingesetzten Maschinen von konstanten Produk­tionskoeffizienten ausgeht, ergeben sich bei der intensitatsmaBigen Anpassung konvexe Verbrauchsfunktionen und damit nichtlineare Zusammenhange von Faktoreinsatz und Ausbringung.

Eine Weiterentwicklung dieses Ansatzes wurde von HEINEN [1965] vorgenom­men, der bei der Analyse der technischen Zusammenhange noch starker ins De­tail geht und auch die zeitliche Dauer der Produktion explizit beriicksichtigt. Er zerlegt den ProduktionsprozeB in Elementarkombinationen, die jeweils einen ein­heitlichen Arbeitsvorgang so beschreiben, daB eine eindeutige Beziehung zwi­schen der technischen und der okonomischen Leistung besteht. Die Verbindung zur Ausbringungsmenge geschieht mit Hilfe von Wiederholungsfunktionen, die angeben, wie haufig die einzelnen Elementarkombinationen genutzt werden, urn eine bestimmte Ausbringung zu erzielen.

Eine Ubertragung der volkswirtschaftlichen Input/Output-Analyse auf die be­triebliche Produktion wurde von PICHLER [1953] und KLoOCK [1969a] geleistet. Dabei werden fUr die mehrstufige Produktion die Lieferbeziehungen zwischen den als Produktionsstellen bezeichneten betrieblichen Teilbereichen mit Hilfe von InputlOutput-Matrizen und -gleichungen abgebildet.

In den Modellen der dynamischen Produktionstheorie wird zusatzlich die in den bisher genannten Ansatzen weitgehend vemachlassigte zeitliche Dauer der Pro­duktionsprozesse beriicksichtigt. Einen zusammenfassenden Uberblick tiber die genannten Ansatze und ihren Beitrag zur Entwicklung der betriebswirtschaftli­chen Produktionstheorie gibt Tabelle 2.

1m Verlauf dieser Entwicklung wurden die produktionstheoretischen Ansatze immer komplexer und realitatsnaher, die Abbildung des Ablaufs der Produktion wurde immer detaillierter, der Anwendungsbereich vergroBerte sich auf immer weitere Fertigungstypen. In den nachfolgenden Kapiteln 2 bis 4 werden die hier nur kurz angesprochenen Ansatze der Produktionstheorie ausfiihrlich dargestellt. Dartiber hinaus wird in Kapitel 5 ein Einblick in aktuelle Probleme der For­schung auf dem Gebiet der Produktionstheorie gegeben.

Da im Mittelpunkt der Produktionstheorie der Zusammenhang von Faktoreinsatz­und Ausbringungsmengen in Form einer Produktionsfunktion steht, sind fUr die genannten Ansatze im deutschsprachigen Raum auch folgende Bezeichnungen gelaufig, die gleichzeitig die Reihenfolge ihrer Entstehung zum Ausdruck brin-

Page 36: Produktionstheorie ||

24 1. Einfiihrung

gen sollen: Die klassische und neoklassische Produktionstheorie wird als Pro­duktionsfunktion vom Typ A bezeichnet, die GUTENBERGSche Theorie der An­passungsformen in Abgrenzung hierzu als Produktionsfunktion vom Typ B. Der Ansatz von HEINEN gilt als Produktionsfunktion vom Typ C, die betriebswirt­schaftliche Input/Output-Analyse als Produktionsfunktion vom Typ D. SchlieB­lich werden die dynamischen Weiterentwicklungen der Produktionstheorie von KUPPER und MA TIHES als Produktionsfunktionen vom Typ E bzw. Typ F be­zeichnet.

Tabelle 2: Ansatze der Produktionstheorie

Ansatz Kennzeichen

klassische Produktionstheorie klassisches Ertragsgesetz: erst zunehmende, dann abnehmende Grenzertrage

neoklassische Produktionstheorie von Anfang an abnehmende Grenzertrage

lineare Aktivitatsanalyse konstante Produktionskoeffizienten

Theorie der Anpassungsformen indirekter Zusammenhang von Faktoreinsatz und Ausbringung

Heinen-Produktionsfunktion Elementarkombinationen

Input/Output-Analyse Abbildung von Lieferbeziehungen

dynamische Produktionstheorie Bertlcksichtigung der Dauer des Produk-tionsvollzugs

Charakteristisch fur die betriebswirtschaftliche Produktionstheorie ist neben der angestrebten Realitatsnahe ihre Orientierung an betrieblichen Entscheidungen. So ist die Formulierung der grundlegenden Zusammenhange von Faktoreinsatz und Ausbringung in der Produktionstheorie eine Voraussetzung ffir die Analyse der monetaren Auswirkungen der Produktion, auf die in den folgenden Ausfuhrungen ebenfalls eingegangen wird. Ein weiterer Aspekt, unter dem die einzelnen Pro­duktionsfunktionen untersucht werden, ist ihre Eignung zur Losung von Proble­men der Produktionsplanung.

Page 37: Produktionstheorie ||

25

2. Ertragsgesetzliche Produktionsfunktionen In diesem Kapitel werden die ertragsgesetzlichen Produktionsfunktionen behan­delt. Dazu zahlen alle Ansatze, die sich am klassischen oder neoldassischen Er­tragsgesetz orientieren. Auch wenn sie fUr die industrielle Produktion von unter­geordneter Bedeutung ist, wird in Abschnitt 2.1 aus historischen Grunden zu­nachst die klassische Produktionsfunktion dargestellt. Dann schlieBt sich in Ab­schnitt 2.2 die neoklassische Produktionsfunktion an, wobei die inhaltlichen Zu­sammenhange zur klassischen Produktionsfunktion herausgearbeitet werden. Wiihrend die beiden genannten Ansatze eine (begrenzte) Substitutionalitat der Produktionsfaktoren unterstellen, geht die in Abschnitt 2.3 behandelte lineare Aktivitiitsanalyse von limitationalen Faktoreinsatzmengenverhiiltnissen aus. Den­noch wird sie hier im Zusammenhang mit den ertragsgesetzlichen Produktions­funktionen behandelt, da sich mit ihrer Hilfe auch fUr den Fall der Limitationali­tat ertragsgesetzliche Verlaufe herleiten lassen.

2.1 Die k1assische Produktionsfunktion

2.1.1 Ausgangspunkt

Ausgangspunkt fUr die Aufstellung der klassischen Produktionsfunktion war die landwirtschaftliche Erzeugung. Es liiBt sich beobachten, daB bei fest vorgegebe­nen Einsatzmengen der Produktionsfaktoren Boden und Saatgut eine Variation des Arbeitskriifteeinsatzes zunachst zu steigenden und anschlieBend zu fallenden Ertragszuwachsen ftihrt. Diese zuerst yom Physiokraten TURGOT formulierte Ge­setzmiiBigkeit, die als klassisches Ertragsgesetz bezeichnet wird, lautet in einer Dbersetzung von WEDDIGEN [1950, S. 124]:

"Die Saat, die auf einen von Natur fruchtbaren, aber unbearbeiteten Boden fiilIt, ware eine fast vollig verlorene Ausgabe. Verbindet man damit eine einzige Bearbeitung, so ist der Ertrag schon starker; eine zweite und dritte Bearbeitung konnten vielleicht den Ertrag nicht nur verdoppeln oder verdreifachen, sondern vervier- oder verzehnfachen, und der Ertrag wiirde auf diese Weise in einem sehr viel rascher an­steigenden Verhiiltnis wachsen, als die Ausgaben anwachsen, und das bis zu einem gewissen Punkt, wo der Ertrag im Vergleich zum Auf­wand der groBtmogliche sein wird. Wird dieser Punkt tiberschritten, so wird bei weiterer VergroBerung der Ertrag noch steigen, aber weniger, und wird nach und nach immer weniger und weniger, bis daB, da die

Page 38: Produktionstheorie ||

26 2. Ertragsgesetzliche Produktionsfunktionen

Fruchtbarkeit der Erde erschOpft ist und auch kiinstliche MaBnahmen nichts mehr hinzufiigen konnen, ein Anwachsen des Aufwandes dem Erzeugnis absolut nichts mehr hinzufiigen wiirde."

So erhalt man z.B. zu den in Tabelle 3 angegebenen Werten fUr Arbeitseinsatz und Getreideertrag den in Abbildung 12 dargestellten, s-formigen Kurvenverlauf. Es wird deutlich, daB der erste bis vierte Arbeiter jeweils einen groBeren Ertrags­zuwachs bringt als der vorherige. Ab dem fiinften Arbeiter kehrt sich dieser Zu­sammenhang jedoch urn, die Ertragszuwachse sinken zunachst langsam, dann immer schneller, bis der neunte, zehnte und elfte Arbeiter schlieBlich sogar zu einem Riickgang des Gesamtertrags fiihren.

Tabelle 3: Beispiel zum klassischen Ertragsgesetz

Arbeiter 0 1 2 3 4 5 6 7 8 9 10 11

Getreide 0 3 13 33 55 69 77 81 84 83 81 78

Getreide

90 80

70 60

50

40

30 20

10

+-=+--+--+--+--+--I----t--+----If---f--+---. Arbeiter 1 234567891011

Abb. 12: Verlauf einer klassischen Produktionsfunktion

Dieser Verlauf der klassischen Produktionsfunktion laBt sich wie folgt begriin­den: Da wenige Arbeiter gar nicht in der Lage sind, ein Feld bestimmter GroBe ordentlich zu bewirtschaften, treten anfangs durch einen zusatzlichen Arbeiter

Page 39: Produktionstheorie ||

2.1 Die klassische Produktionsfunktion 27

erhebliche ProduktiviUitssteigerungen auf, bis - in diesem Fall bei vier Arbeitem -die fUr die gegebene Bodenfliiche mindestens erforderliche Anzahl von Arbeitem erreicht ist. Daraus ergibt sich der zuniichst konvexe Kurvenverlauf.

Der anschlieBende konkave Bereich der klassischen Produktionsfunktion kommt dadurch zustande, daB sich durch einen zusiitzlichen Arbeiter der Ertrag zwar zuniichst jeweils noch steigem liiBt, jedoch nehmen die Ertragszuwiichse urn so starker ab, je mehr man sich dem aufgrund von biologischen GesetzmiiBigkeiten determinierten maximalen Ertrag des Bodens niihert. Eine weitere Erhohung der Anzahl der Arbeiter - im vorliegenden Fall fiber den achten hinaus - fiihrt dazu, daB diese sich gegenseitig behindem, so daB ihre Produktivitiit abnimmt und der Gesamtertrag wieder zurfickgeht.

2.1.2 Die Produktionsfunktion

Auch bei der theoretischen Diskussion des klassischen Ertragsgesetzes untersucht man die Abhiingigkeit der Ausbringungsmenge x von der Variation eines beliebi­gen Produktionsfaktors rj bei Konstanz aller anderen Produktionsfaktoren (vgl. VON STACKELBERG [1932]). Dies entspricht der Betrachtung eines Schnittes par­allel zur rj I x -Ebene durch das in Abbildung 13 fUr den Fall zweier Produktions­faktoren und eines Produktes dargestellte Ertragsgebirge der klassischen Pro­duktionsfunktion.

x

Abb. 13: Ertragsgebirge zur klassischen Produktionsfunktion

Page 40: Produktionstheorie ||

28 2. Ertragsgesetzliche Produktionsfunktionen

In Abbildung 14 ist eine idealisierte Darstellung des klassischen Ertragsgesetzes angegeben. Anhand der KurvenverHiufe lassen sich vier typische Phasen unter­scheiden. Fiir die Abgrenzung dieser Abschnitte sind folgende Begriffe von Be­

deutung:

• Die Gesamtertragsfunktion x gibt an, we1che Ausbringungsmenge x sich mit einer bestimmten Einsatzmenge des variablen Produktionsfaktors 'i herstellen last.

• Unter dem Grenzertrag x' versteht man den Ertragszuwachs, der sich durch eine zuslitzliche (marginale) Einheit des variablen Produktionsfaktors erzielen last. Mathematisch last sich der Grenzertrag als (partielle) erste Ableitung der Gesamtertragsfunktion nach dem Produktionsfaktor ri darstellen:

I ax x=-

ali • Den Durchschnittsertrag e erhlilt man, indem man den Gesamtertrag durch den

zu seiner Herstellung erforderlichen Faktoreinsatz des variablen Produktions­faktors 'i dividiert:

x x' e

x e=-

'i

Abb. 14: Klassisches Ertragsgesetz

Gesamtertragsfunktion: x

Durchschnittsertragsfunktion: e

IV r· I

Page 41: Produktionstheorie ||

2.1 Die klassische Produktionsfunktion 29

Die erste Phase des klassisehen Ertragsgesetzes entsprieht dem konvexen Ab­sehnitt der Gesamtertragsfunktion. Sie ist dureh steigende Grenzertriige gekenn­zeichnet. Aueh der Durehsehnittsertrag und der Gesamtertrag nehmen in dieser Phase zu. Das Ende der Phase ist dadureh eharakterisiert, daB der Grenzertrag x' sein Maximum bzw. die Gesamtertragsfunktion x ihren Wendepunkt erreieht. Diesen Punkt bezeiehnet man aueh als die Schwelle des Ertragsgesetzes.

In der zweiten Phase nimmt der Grenzertrag bereits ab, Durehsehnittsertrag und Gesamtertrag nehmen noeh zu. Am Ende dieser Phase erreieht, wie unten gezeigt wird, der Durchschnittsertrag sein Maximum. Dieser Punkt ist weiter dadureh gekennzeiehnet, daB die Grenzertragslrurve die Durehsehnittsertragskurve sehneidet und daB ein Fahrstrahl yom Ursprung an die Gesamtertragskurve zur Tangente wird. Da mit dem Maximum des Durehsehnittsertrags gleiehzeitig die hoehste Produktivitat des variablen Produktionsfaktors erreieht wird, ist an dieser Stelle seine teehniseh optimale Ausnutzung gegeben.

In der dritten Phase fallen der Grenzertrag und der Durehsehnittsertrag, der Ge­samtertrag nimmt noeh zu. Die Ertragszuwaehse werden jedoeh aufgrund der ab­nehmenden Grenzertrage immer geringer. Das Ende dieser Phase ist erreieht, wenn der Gesamtertrag sein Maximum und der Grenzertrag den Wert Null an­nimmt.

In der vierten und letzten Phase fallen samtliehe Kurven, der Grenzertrag ist ne­gativ. Das bedeutet, daB jeder zusatzliehe Einsatz des variablen Produktionsfak­tors 'i zu einem Riiekgang der Ausbringungsmenge x fiihrt. Bei einer am okono­misehen Prinzip bzw .. am Effizienzgedanken ausgeriehteten Produktion wiirden die dieser Phase zugeordneten Produktionsmogliehkeiten nieht genutzt, da sich jede Ausbringungsmenge dureh Nutzung einer Produktionsmogliehkeit in der vorhergehenden Phase mit geringerem Einsatz des variablen Produktionsfaktors erzeugen lieBe. Die maximal herstellbare Ausbringungsmenge am Ende der drit­ten Phase des Ertragsgesetzes ist daher als die Grenze des Bereiehs wirtsehaftli­eher Produktion bzw. als Kapazitiitsgrenze anzusehen.

In Abbildung 15 sind die eharakteristisehen Merkmale der versehiedenen Phasen des klassisehen Ertragsgesetzes noeh einmal zusammengestellt. Ein sinnvoller Endpunkt der vierten Phase laBt sich nieht angeben, da diese bei Beriieksiehti­gung des Effizienzprinzips nieht durehlaufen wird.

Page 42: Produktionstheorie ||

30 2. Ertragsgesetzliche Produktionsfunktionen

Phase Gesamtertrag Durchschnitts- Grenzertrag Endpunkt x ertrag e x'

I positiv positiv positiv Wendepunkt von x

steigend steigend steigend Maximum von x' konvex

II positiv positiv positiv Maximum von e

steigend steigend fallend e=x' konkav

m positiv positiv positiv Maximum von x steigend fallend fallend x'=O konkav

IV positiv positiv negativ

? fallend fallend fallend konkav

Abb. 15: Phasen des klassischen Ertragsgesetzes

Die Bedingung fUr den Ubergang von der zweiten zur dritten Phase laBt sich wie folgt als Satz formulieren und beweisen:

Satz: Die Grenzertragskurve schneidet die Durchschnittsertragskur­ve in ihrem Maximum:

X , e=-=x

r.. 1

Beweis: 1m Maximum des Durchschnittsertrags muS die folgende not­wendige Bedingung erfiillt sein:

d(~) r.. r.. ·x'-l·x !

__ 1_= 1 0 dTj Tj2

Hieraus ergibt sich durch einige einfache Umformungen die Behauptung:

<=> Tj. x'-l· x = 0

<=> Tj ·x'= x

Page 43: Produktionstheorie ||

2.1 Die klassische Produktionsfunktion

x ¢:::> x'=-

'i

31

Solange der Grenzertrag hOher ist als der Durchschnittsertrag, tragt jede zusatz­lich eingesetzte Einheit des variablen Produktionsfaktors starker zum Gesamter­trag bei, als es dem Mittel der zuvor eingesetzten Einheiten entspricht. Daher ist der Durchschnittsertrag von n + I Faktoreinheiten groBer als der von n Fak­toreinheiten. Da in der zweiten Phase des Ertragsgesetzes die Grenzertrage be­reits abnehmen, die Durchschnittsertrage jedoch wie beschrieben noch zunehmen, bewegen sich die beiden Kurven aufeinander zu. Sie schneiden sich, wenn Grenzertrag und Durchschnittsertrag gerade gleich hoch sind. Wegen des abneh­menden Ertragszuwachses ist bei einer weiteren Erhohung der Einsatzmenge des variablen Produktionsfaktors der Grenzertrag geringer als der Durchschnittser­trag, daher ffihrt eine Ausweitung der Produktion von diesem Punkt an zu ab­nehmenden Durchschnittsertragen. Also muG der Schnittpunkt von Grenz- und Durchschnittsertragskurve tatsachlich beim Maximum des Durchschnittsertrages liegen.

2.1.3 Die Kostenfunktion

Der aus dem klassischen Ertragsgesetz resultierende Kostenverlauf laBt sich wie folgt herleiten: Die Produktionsfunktion gibt in einer Partialbetrachtung den Zu­sammenhang zwischen der Ausbringungsmenge x und der Einsatzmenge des va­riablen Produktionsfaktors rj sowie dem als konstant angenommenen Be­standsniveau der sonstigen Produktionsfaktoren E. an:

x = f('i ,E.)

Soweit diese Funktion invertierbar ist, also ffir die erste bis dritte Phase des klas­sischen Ertragsgesetzes, erhaIt man die Faktoreinsatzfunktion des variablen Pro­duktionsfaktors 'i in Abhangigkeit von der gewfinschten Produktionsmenge und dem Bestand der konstanten Produktionsfaktoren:

'i =g(x,E.)

Graphisch ergibt sich die Faktoreinsatzfunktion, wie in Abbildung 16 dargestellt, durch Spiegelung der Produktionsfunktion an der Winkelhalbierenden des 1. Quadranten.

Page 44: Produktionstheorie ||

32

Produktions­funktion

2. Ertragsgesetzliche Produktionsfunktionen

Faktoreinsatz­funktion

Abb. 16: Produktionsfunktion und Faktoreinsatzfunktion

Durch Bewertung der Faktoreinsatzmengen 1i mit ihren Preisen qi kommt man zur klassischen Kostenfunktion. Diese setzt sich additiv aus einem von der Aus­bringungsmenge unabhangigen Fixkostenanteil K F' der ffir den Einsatz der kon­stanten Produktionsfaktoren, z.B. ffir die Aufrechterhaltung der Betriebsbereit­schaft, anfallt, und den mit der Ausbringungsmenge ansteigenden variablen Ko­sten des Produktionsfaktors i zusammen.

K{x) = KF +1i{X)·qi

Abbildung 17 zeigt den Verlauf einer solchen klassischen Kostenfunktion sowie der zugehorigen Grenzkosten und Durchschnittskosten. Der s-fOrmige Verlauf der Gesamtkostenfunktion kann analog zur Betrachtung der Produktionsfunktion in vier charakteristische Bereiche eingeteilt werden. Zu ihrer Abgrenzung werden folgende Funktionen herangezogen:

• Die Gesamtkostenfunktion K(x) gibt die Kosten an, mit denen sich eine be­stimmte Ausbringungsmenge x herstellen laBt.

• Ais Grenzkosten K'(x) bezeichnet man die zusatzlichen Kosten, die ffir die Herstellung einer weiteren Produkteinheit anfallen. Sie ergeben sich als erste Ableitung der Kostenfunktion:

K'{x) = d K{x) dx

Page 45: Produktionstheorie ||

2.1 Die klassische Produlctionsfunktion 33

• Die Durchschnittskosten bzw. Stiickkosten k(x) erhaIt man, indem man die Gesamtkosten durch die zugehOrige Ausbringungsmenge dividiert:

k{x) = K{x) x

• Zur Ermittlung der variablen Durchschnittskosten kv(x) hingegen werden die Fixkosten nicht beriicksichtigt, sondern lediglich die variablen Kosten durch die Ausbrlngungsmenge dividiert:

K(x) K'(x) k(x) kv(x)

K{x)- KF Ji{x)· qj kv (x) = = ....:......:...'---'-

X X

Gesamtkostenfunktion: K(x)

Grenzkostenfunktion: K'(x)

Durchschnittskostenfunktion: k(x)

Funktion der variablen Durch­schnittskosten: kv (x)

~------------~----~----------------------~ x o I II ill N

Abb. 17: Klassische Kostenfunktion

In der ersten Phase verliiuft die Gesamtkostenfunktion konkav, d.h. sie weist fallende Grenzkosten auf. Auch die Durchschnittskosten und die variablen Durchschnittskosten nehmen mit zunehmender Ausbringungsmenge abo Diese Phase endet, wenn die Gesamtkostenfunktion ihren Wendepunkt bzw. die Grenz­kostenfunktion ihr Minimum erreicht.

Page 46: Produktionstheorie ||

34 2. Ertragsgesetzliche Produktionsfunktionen

Die zweite Phase weist progressiv ansteigende Gesamtkosten, steigende Grenz­kosten sowie fallende Durchschnitts- und variable Durchschnittskosten auf. Ihr Ende ist dadurch gekennzeichnet, daB die Grenzkostenkurve die Kurve der varia­bIen Durchschnittskosten in deren Minimum schneidet. Diesen Punkt bezeichnet man als das Betriebsminimum, die zugehOrigen Grenzkosten gelten als die kurz­fristige Preisuntergrenze, zu der das Untemehmen seine Erzeugnisse am Markt anbieten kann.

In der dritten Phase steigen die Gesamtkosten, die Grenzkosten und die variablen Durchschnittskosten, lediglich die Durchschnittskosten nehmen aufgrund des Ef­fekts der Fixkostendegression noch abo Sie erreichen ihr Minimum am Ende die­ser Phase; dort liegt gleichzeitig der Schnittpunkt von Grenzkosten und Durch­schnittskosten. Dieser Punkt bezeichnet das Betriebsoptimum, da hier das Ver­haItnis von Kosten und Ausbringungsmenge am giinstigsten ist. Die zugehorigen Grenzkosten bilden die langfristige Preisuntergrenze fUr das Untemehmen.

Die vierte Phase ist schlieBlich dadurch gekennzeichnet, daB samtliche Kosten­funktionen progressiv ansteigen. Sie endet mit dem Erreichen der KapazWits­grenze, d.h. bei der maximal herstellbaren Ausbringungsmenge.

2.1.4 Beurteilung der klassischen Produktionsfunktion

An dem Verlauf der klassischen Produktionsfunktion ist bei einer Ubertragung auf die industrielle Produktion in folgenden Punkten Kritik zu iiben:

• Das klassische Ertragsgesetz wurde aufgrund von Beobachtungen in der Landwirtschaft formuliert, deren Erzeugung stark von den biologischen Ge­setzmaBigkeiten des pflanzlichen Wachstums gepragt ist. In der industriellen Produktion gelten jedoch vollstandig andere Produktionsbedingungen, so daB eine Ubertragung nicht generell zulassig ist (vgl. GUTENBERG [1983], S. 318 ff.) .

• Die erste Phase des klassischen Ertragsgesetzes mit ihren zunehmenden Er­tragszuwachsen kommt offensichtlich dadurch zustande, daB in diesem Be­reich die konstanten Produktionsfaktoren ineffizient eingesetzt werden. Ein auf Wirtschaftlichkeit ausgerichtetes Untemehmen wiirde versuchen, eine solche Disproportion der Faktoreinsatzmengen zu vermeiden und den Bestand der konstanten Produktionsfaktoren entsprechend der erwarteten Ausbringungs­menge zu dimensionieren; ein konvexer Verlauf der Produktionsfunktion ware daher im Normalbetrieb nicht zu beobachten.

Page 47: Produktionstheorie ||

2.1 Die klassische Produktionsfunktion 35

Selbst wenn aufgrund eines erheblichen Nachfrageruckgangs die Ausbrin­gungsmenge so weit gesenkt wiirde, daB eine Produktion im unwirtschaftli­chen Bereich stattfinden miiBte, lieBe sich der konvexe Bereich der Produk­tionsfunktion bzw. der konkave Bereich der Kostenfunktion umgehen, indem in einem Teilabschnitt der Produktionsperiode eine effiziente Produktionsal­temative realisiert wiirde und wwend der restlichen Produktionsperiode die Anlagen stillstehen wiirden.

Urn diesen Effekt soweit wie moglich auszunutzen, wiihlt man - wie in Abbil­dung 18 dargestellt - die Produktion mit dem Punkt (11*, x*), an dem ein Fahr­strahl vom Ursprung an die Produktionsfunktion zur Tangente wird, also das Ende der zweiten Phase des Ertragsgesetzes. Mit Hilfe dieser Modifikation er­halt man eine Produktionsfunktion mit von Anfang an nicht-zunehmenden Er­tragszuwachsen.

x

IC.....-'--_______ ~~ ______ __. ri

rt Abb. 18: Produktionsfunktion mit nicht-zunehmenden Ertragszuwachsen

• Weiter wiirde, wie bereits angesprochen, die vierte Phase des Ertragsgesetzes von einem wirtschaftlich orientierten Untemehmen nicht realisiert, da sie dem Effizienzprinzip widerspricht.

Durch die Beseitigung der genannten Kritikpunkte gelangt man zu der im nach­sten Abschnitt behandelten neoklassischen Produktionsfunktion.

Page 48: Produktionstheorie ||

36 2. Ertragsgesetzliche Produktionsfunktionen

2.2 Die neoklassische Produktionsfunktion Wie anhand von Abbildung 18 gezeigt wurde, ergibt sich der Verlauf der neo­klassischen Produktionsfunktion aufgrund von Effizienziiberlegungen aus der klassischen Produktionsfunktion, indem man deren ineffiziente Bereiche durch den jeweils dominierenden Verlauf ersetzt. Thr wesentliches Kennzeichen ist, daB sie keinen Bereich zunehmender Ertragszuwachse, sondem ausschlieBlich kon­stante oder abnehmende Grenzertrage aufweist.

Die neoklassische Produktionsfunktion wird als ein theoretisches Konstrukt be­trachtet. Sie wird nicht aus empirischer Beobachtung oder technischen Zusam­menhangen hergeleitet, sondem ihre Existenz wird postuliert. Es handelt sich urn eine hochaggregierte Betrachtungsweise, die die Produktionsbedingungen des Gesamtbetriebs abbildet. In Abschnitt 2.2.1 werden zunachst die Eigenschaften der neoklassischen Produktionsfunktion diskutiert und durch Plausibilitatsuberle­gungen begriindet, in Abschnitt 2.2.2 die Moglichkeiten der Produktionsplanung im Rahmen der neoklassischen Produktionstheorie dargestellt; in Abschnitt 2.2.3 schlieBlich wird auf ihre empirische Fundierung eingegangen.

2.2.1 Eigenschaften der neoklassischen Produktionsfunktion

Ffir die Diskussion der Eigenschaften einer neoklassischen Produktionsfunktion wird vom Einproduktfall mit n Produktionsfaktoren ausgegangen. Es sei voraus­gesetzt, daB sich die Produktionsbeziehungen des Betriebes durch eine monoton steigende, zweimal stetig differenzierbare Abbildung q> darstellen lassen:

qJ: 9t! ~ 9t~

x = qJ(rl ,r2, ... ,rn )

Eine solche Funktion im (n + 1)-dimensionalen Guterraum laBt sich anhand von Schnitten durch das von ihr aufgeworfene Ertragsgebirge analysieren. Das Er­tragsgebirge einer neoklassischen Produktionsfunktion ist ffir den Fall zweier Produktionsfaktoren rl, r2 und eines Produktes x in Abbildung 19 dargestellt.

Eine neoklassische Produktionsfunktion ist durch folgende Eigenschaften ge­kennzeiehnet:

• konstante oder abnehmende Skalenertrage • positive, abnehmende Grenzertrage • abnehmende Grenzrate der Substitution

Page 49: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 37

Diese Eigenschaften der neoklassischen Produktionsfunktion lassen sich ableiten, indem man die folgenden Betrachtungsebenen untersucht:

(1) Totale Faktorvariation Mit Hilfe der totalen Faktorvariation wird die Frage untersucht, wie die Aus­bringungsmenge x auf eine gleichmiiBige Variation siimtlicher Faktorein­satzmengen (rl,r2, ... ,rn ) reagiert (Abschnitt 2.2.1.1).

(2) Partielle Faktorvariation Bei der partiellen Faktorvariation steht die Frage im Vordergrund, wie sich die isolierte Variation der Einsatzmenge eines einzelnen Produktionsfaktors Ii bei Konstanz aller anderen Produktionsfaktoren auf die Ausbringungs­menge x auswirkt (Abschnitt 2.2.1.2).

(3) Isoquante Die Betrachtung der Isoquante dient dazu zu untersuchen, in welchem Be­reich und in welchem Austauschverhiiltnis sich die Produktionsfaktoren ge­geneinander substituieren lassen, wenn eine bestimmte Ausbringungsmenge x hergestellt werden solI (Abschnitt 2.2.1.3).

Abb. 19: Ertragsgebirge zur neoklassischen Produktionsfunktion

Ein typischer Vertreter der neoklassischen Produktionsfunktion, der ftir die fol­genden Betrachtungen zugrunde gelegt werden solI, ist die COBB-DOUGLAs­

Funktion:

Page 50: Produktionstheorie ||

38

mit: aO,al,a2, ... ,an ~ 0 n Lai ::;;t i=1

2. Ertragsgesetzliche Produktionsfunktionen

Die Ausbringungsmenge x ergibt sich durch multiplikative Verknupfung der mit Ergiebigkeitsfaktoren ai gewichteten Faktoreinsatzmengen rl, r2 , ... , rn und eines Niveaufaktors ao. Durch geeignete Wahl der Gewichte ai (i = t, ... ,n) lassen sich verschiedene Eigenschaften der neoklassischen Produktionsfunktion modellieren.

Ais numerisches Beispiel fur die nachfolgenden Ausfiihrungen wird die folgende COBB-DouGLAS-Produktionsfunktion herangezogen:

X - 5 .. 0,6 .. 0,3 - ·'1 ·'2

2.2.1.1 Totale Faktorvariation

1m Mittelpunkt der totalen Faktorvariation steht die Frage, wie - ausgehend von einem beliebigen Einheitsniveau - die Ausbringungsmenge x auf eine proportio­nale ErhOhung oder Reduktion der Einsatzmengen samtlicher Produktionsfakto­ren, d.h. auf eine Variation des Faktoreinsatzniveaus A., reagiert. Dabei wird die folgende Funktion untersucht:

x(A.) = rp(A.. rl'A.· r2 , ... ,A.. rn) A. ~ 0

Die hiermit beschriebene Abhangigkeit der Ausbringungsmenge yom Faktorein­satzniveau bezeichnet man als Niveaugrenzproduktivitiit oder als Skalenertriige bzw. returns to scale. Es sind drei grundsatzliche Fille denkbar:

(a) Konstante Skalenertriige: Die Ausbringungsmenge steigt oder faUt propor­tional zum Niveau des Faktoreinsatzes.

x{A.) = A.. x{t)

(b) Abnehmende Skalenertriige: Die Ausbringungsmenge steigt oder faUt unter­proportional zum Faktoreinsatzniveau.

x{A.} < A.·x{t}

(c) Zunehmende Skalenertriige: Die Ausbringungsmenge steigt oder raUt uber­proportional zum Faktoreinsatzniveau.

x{A.} > A..x{t}

Page 51: Produktionstheorie ||

202 Die neoklassische Produktionsjunktion 39

Weiter kann der Fall auftreten, daB der Typ der Skalenertrage im Verlauf der Funktion schwankt. Dieser FalllaBt sich jedoch auf die drei GrundfaIle zurUck­ftihren.

Fiir die oben eingeftihrte COBB-DoUGLAs-Produktionsfunktion gilt:

x(A}=50(AorI}o,6 0(kr2)O,3 =5.AO,6 orIo,6 .AO,3 or~,3

= AO,9 050 rIo,6 0 r~,3 = AO,9 0 x(l)

Somit weist diese Funktion abnehmende Skalenertrage auf.

Die Betrachtung der Skalenertrage bedeutet einen Schnitt durch das Ertragsgebir­ge, der senkrecht zur rII r2 -Ebene verlauft, und zwar oberhalb des Strahls in der Ebene, dessen Steigung dem VerhaItnis der Faktoreinsatzmengen der beiden be­trachteten Produktionsfaktoren bei der als Ausgangspunkt gewiihlten Produk­tionsaltemative entspricht. Die entsprechend den drei genannten Fallen mogli­chen Verlaufe der Skalenertrage sind in Abbildung 20 (a) - (c) dargesteUt.

Konstante Skalenertrage liegen in der Regel dann vor, wenn die Relationen samtlicher Einsatzfaktoren harmonisch aufeinander abgestimmt sind. Abnehmen­de Skalenertrage hingegen deuten darauf hin, daB bestimmte Einsatzfaktoren durch die Ausdehnung der Produktion tibermaBig beansprucht werden und daher zu einem relativen Rtickgang der Ausbringungsmenge ftihren (diseconomies of scale) 0 Bei zunehmenden Skalenertragen liegen noch suboptimal genutzte Ein­satzfaktoren vor, die durch die Ausdehnung der Produktion in ihren optiroalen Wirknngsgrad hineinwachsen (economies of scale). Beides steht im Grunde im Widerspruch zu der Annahme, daB bei der totalen Faktorvariation siimtliche Pro­duktionsfaktoren gleichmaBig variiert werden.

Es bestehen verschiedene Moglichkeiten, eine gegebene Produktionsfunktion auf ihre Skalenertrage zu untersuchen:

(1) Bei einer neoklassischen Produktionsfunktion ftihrt eine Erhohung des Fak­toreinsatzniveaus stets zu einer hoheren Ausbringungsmenge. Die erste Ab­leitung der yom Faktoreinsatzniveau A. abhangigen Produktionsfunktion ist daher streng positiv:

( 1) d cp( A . rl ' A . r2 ' ... , A . rn) X' /I. = >0

dA

Page 52: Produktionstheorie ||

40

x

(a) konstante Skalenertdige

(b) abnehmende Skalenertrage

(c) zunehmende Skalenertrage

Abb. 20: Totale Faktorvariation

2. Ertragsgesetzliche Produktionsfunktionen

Page 53: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 41

Da es sich bei den Skalenertragen urn die Niveaugrenzproduktivitiit handelt, bildet man die zweite Ableitung, aus der sich die Tendenz des Ertragszuwach­ses ablesen laBt:

Nunmehr gilt:

konstante Skalenertrage

abnehmende Skalenertrage

zunehmende Skalenertriige

(2) Die Abhangigkeit der Ausbringungsmenge von einer Variation des Fak­toreinsatzniveaus laBt sich weiter mit Hilfe der Skalenelastizitiit E beschrei­ben. Diese gibt an, in we1chem AusmaB die Ausbringungsmenge x auf eine marginale Anderung des Faktoreinsatzniveaus reagiert:

d X(A) A E= .--

d A X(A)

Nunmehr gilt:

konstante Skalenertrage

abnehmende Skalenertrage

zunehmende Skalenertrage

(3) Besonders einfach fallt die Bestimmung der Skalenertrage bei homogenen Produktionsfunktionen. Eine (Produktions-)Funktion heiSt homogen vom Grade k, falls eine proportionale Variation der Faktoreinsatzmengen urn A. zu einer Variation der Ausbringungsmenge urn Ak fiihrt:

X(A) = qJ(A. rl,A· r2, ... ,A· rn) = Ak ·qJ(rl ,r2, ... ,rn) = Ak . x

Nunmehr gilt:

konstante Skalenertrage

abnehmende Skalenertrage

zunehmende Skalenertrage

Bei homogenen Produktionsfunktionen entspricht somit die Skalenelastizitiit dem Homogenitatsgrad.

Page 54: Produktionstheorie ||

42 2. Ertragsgesetzliche Produktionsfunktionen

Da die COBB-DOUGLAS-Produktionsfunktion eine homogene Funktion ist, lii8t sich ihre Skalenelastizitat wie folgt bereehnen:

= ao ./lal rl al ./la2 r2 a2 ..... /lan rn an

- 'lal +a2 + ... +an a 1i al '" a2 r. an - /I. • o· 1 . '2 ..... n

'll:!' la. =/1. 1= I·X

Die oben eingefiihrte COBB-DouGLAs-Produktionsfunktion weist einen Homo­genitiitsgrad und damit eine Skalenelastizitiit von k = 0,6 + 0,3 = 0,9 auf; daraus folgen die bereits naehgewiesenen abnehmenden Skalenertriige.

Aufgrund der oben formulierten Voraussetzung n :Lai ~1 i=l

hat die COBB-DouGLAs-Produktionsfunktion als ein typiseher Vertreter der neo­klassisehen Produktionsfunktion konstante oder abnehmende Skalenertriige. Die­se Eigensehaft gilt fiir samtllehe neoklassisehen Produktionsfunktionen. Abneh­mende Skalenertriige treten insbesondere dann auf, wenn fUr die Produktion rele­vante Einsatzfaktoren nieht explizit in der Produktionsfunktion erfaBt sind und daher nieht an der proportionalen Niveauvariation teilnehmen, oder aueh bei Un­teilbarkeiten einzelner Einsatzfaktoren oder Produkte.

2.2.1.2 Partielle Faktorvariation

Gegenstand der partiellen Faktorvariation ist die Untersuchung der Grenzertriige der einzelnen Produktionsfaktoren, d.h. des Ertragszuwaehses, der durch die iso­lierte Erhohung der Einsatzmenge eines bestimmten Produktionsfaktors hervor­gerufen wird. Dabei werden die Einsatzmengen aller anderen Produktionsfakto­ren konstant gehalten. Es wird also die folgende partielle Produktionsfunktion betraehtet:

Den Grenzertrag des variablen Produktionsfaktors i erhiilt man entweder, indem man die partielle Produktionsfunktion naeh ri ableitet, oder dureh partielle Diffe­rentiation der urspriingliehen Produktionsfunktion:

Page 55: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion

bzw.

, d cP X(i) =-

dli

43

Die neoklassische Produktionstheorie geht nun - im Gegensatz zur klassischen Produktionstheorie - von positiven, aber abnehmenden Grenzertragen aus. Diese Eigenschaft bezeichnet man als das Ertragsgesetz der Neoklassik.

(1) x(i) '= d CPi = d cP > 0 i = 1, ..• , n dr.· dr.· I I

d 2 :\2 (2) " CPi a cP 0

x(i) = --2- = - -2 < dli dli

i =1, ... ,n

Eine abgeschwachte Formulierung des Ertragsgesetzes verlangt lediglich positi­ve, nicht-zunehmende Grenzertrage. In diesem Fall reicht es aus, wenn die Un­gleichung (2) als Gleichung erfiillt ist (vgl. KISTNER [1993a], S. 102).

Die partielle Faktorvariation HiBt sich mit Hilfe eines Schnitts durch das Ertrags­gebirge parallel zu der Achse des variierten Faktors und auf dem festgelegten Niveau '1 . des konstanten Faktors darstellen. Es ergibt sich ein von Anfang an konkaver Kurvenverlauf, der in Abbildung 21 als obere Begrenzung der schraf­fierten Flache dargestellt ist.

Abb. 21: Partielle Faktorvariation

Page 56: Produktionstheorie ||

44 2. Ertragsgesetzliche Produktionsfunktionen

Fiir die COBB-DOUGLAS-Produktionsfunktion UiBt sich die Giiltigkeit des neo­klassischen Ertragsgesetzes wie folgt nachweisen:

( ) -at - a· t a· - a·+t - a a· x(i) = ({Ji 'i = aO'1i ·····'i-I 1- • 'i 1 • ri+I 1 • ••• ·rn n = c· 'i 1

't -at - ai t - al·+t - an rm: c = ao . rl ·····'i-I - . 'i+I · ... ·rn

(1)

(2) II a2 ({J (1) a·-2 0 x(·) =--=c·a·· a·- 'r: 1 < I a 2 I I I r: '--v---'

I <0

fiir 'i ~ 0

Fiir die oben eingefiihrte Produktionsfunktion ergibt sich:

a x = 3. r, -0,4 . r~,3 > 0 a rl 1

a2 x - 12 .. -1,4 r.0,3 < 0 ----, "1 . 2 a r? Das neoklassische Ertragsgesetz gilt fiir Produktionsfaktor 1.

a x = 1,5. rIM. riO,7 > 0 a r2

a2 x --= -1 05· r,0,6. r.-I,7 < 0 2 ' 1 2 a r2

Das neoklassische Ertragsgesetz ist auch fiir Produktionsfaktor 2 erfiillt.

Fiir jeden einzelnen Produktionsfaktor gilt SOInit, daB sich zwar durch zusatzli­chen Faktoreinsatz eine Ertragssteigerung erreichen liiBt, daB diese Ertragssteige­rung jedoch urn so geringer ausfa1lt, je haher das Einsatzniveau des variablen Produktionsfaktors bereits ist. Dies UiBt sich darauf zurUckfiihren, daB die Ergie­bigkeit der konstanten Produktionsfaktoren immer weiter abnimmt, je starker sie in Anspruch genommen werden, so daB sie letztlich die rnogliche Ausbringungs­rnenge nach oben limitieren.

Page 57: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 45

2.2.1.3 Isoquante

Auf der dritten Betrachtungsebene wird das Austauschverhaltnis zwischen den einzelnen Produktionsfaktoren untersucht. Dies geschieht mit Hilfe der Isoquan­te, die angibt, wie unterschiedliche Faktoreinsatzmengenkombinationen zur Her­stellung einer vorgegebenen Ausbringungsmenge x fUhren konnen. Die Iso­quante ist wie folgt definiert:

Die Menge aller effizienten Kombinationen von Faktoreinsatzmengen r. = (rl ' r2 , ... , rn), die die Erzeugung einer bestimmten Ausbringungs­menge x ermoglichen, heiSt Isoquante.

Die Isoquante Hillt sich in impliziter Form mit Hilfe der Isoquantengleichung formal darstellen:

CP(rl,r2, ... ,rn )-x = 0

Durch Auflosen nach einem der beteiligten Produktionsfaktoren k erhalt man eine Isoquantengleichung in expliziter Form:

rk =fk{rt,···,rk-l,rk+l,···,rn I x) Urn die Isoquante graphisch darstellen zu konnen, betrachtet man das Aus­tauschverhaltnis zweier ausgewahlter Produktionsfaktoren k und I und halt alle anderen Faktoreinsatzmengen konstant. Dann Hillt sich die Isoquante in expliziter Form darstellen, indem man die Isoquantengleichung nach einem der beiden va­riablen Produktionsfaktoren auflost:

Graphisch entspricht die Isoquante dem effizienten Rand eines Schnitts durch das Ertragsgebirge, der parallel zu der Faktorebene in Hohe der Ausbringungsmenge x verHiuft. Bei der neoklassischen Produktionsfunktion verlauft sie, wie in Ab­bildung 22 dargestellt, konvex zum Ursprung; die Isoquanten zu unterschiedli­chen Ausbringungsmengenniveaus entsprechen ahnlichen Kurvenzligen.

Es handelt sich bei der neoklassischen Produktionsfunktion somit urn eine Funk­tion mit partielier Substitutionalitiit der Einsatzfaktoren, d.h. eine vorgegebene Ausbringungsmenge laBt sich prinzipiell mit unterschiedlichen Faktoreinsatz­mengenkombinationen erzeugen; jedoch kann auf keinen der Einsatzfaktoren vollstandig verzichtet werden. Den Betrag, urn den die Einsatzmenge des Pro­duktionsfaktors k erhoht werden muS, urn eine Verringerung der Einsatzmenge

Page 58: Produktionstheorie ||

46 2. Ertragsgesetzliche Produktionsfunktionen

des Faktors I bei Konstanz aller anderen Faktoren und vorgegebener Ausbrin­gungsmenge X auszugleichen, bezeichnet man als Grenzrate der Substitution ski. Sie entspricht formal der negativen Steigung der Isoquantengleichung:

ax

a rl d rk ski =--=---a x d rl

ark

Abb. 22: Isoquante

Diese Beziehung laBt sich wie folgt herleiten: Geht man davon aus, daB der Ubergang von einem Punkt der Isoquante mit einem bestimmten Faktoreinsatz­mengenverhiiltnis zu einem anderen Punkt mit einem anderen Faktoreinsatzmen­genverhiiltnis zwar Anderungen der Faktoreinsatzmengen, aber keine Anderung bei der Ausbringungsmenge bewirkt, so lassen sich die insgesamt auftretenden Anderungen mit Hilfe des totalen Differentials darstellen:

a x a x ! d x=--·drk +-- . drl=O

a rk a rl

ax

d rk a rl Xl' <=> ---=--=-=skl

d r[ a x Xk'

ark

Page 59: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 47

Hieraus ergibt sich weiterhin, daB sich die Grenzrate der Substitution altemativ zur Ableitung der Isoquantengleichung aus dem umgekehrten VerhaItnis der Grenzproduktivitiiten der betrachteten Produktionsfaktoren ermitteln last.

Offensichtlich ist die Grenzrate der Substitution umso groBer, je geringer das Einsatzniveau des Produktionsfaktors kist. Diese Eigenschaft der neoklassischen Produktionsfunktion bezeichnet man als die abnehmende Grenzrate der Substitu­tion. Sie last sich formal nachweisen, indem man die Grenzrate der Substitution nach dem zu ersetzenden Produktionsfaktor rl ableitet:

d ski = _ d 2 rk < 0 d rl d r,2

FUr das Beispiel der COBB-DOUGLAs-Produktionsfunktion last sich diese Eigen­schaft wie folgt herleiten:

Co . rk ak • r, al - X = 0

1

~ r, ~Co .:,u/ )u.

Fur das oben eingefuhrte Beispiel ergibt sich bei einer Ausbringungsmenge von x = 5 die Isoquante wie folgt:

5=5.r1o,6 .r~,3

bzw.

FUr die Grenzrate der Substitution gilt:

bzw.

., - r.-{),5 '1 - 2

d 'i. -15 s12 =---=0,5 r2 '

d r2

Page 60: Produktionstheorie ||

48 2. Ertragsgesetzliche Produktionsfunktionen

d s21 6 -4 0 --=- 'i < d'i

b d s12 - -0 75 -2,5 0 zw. -, T2 < d T2

Urn bei der vorgegebenen Ausbringungsmenge von 5 bei einem Einsatzniveau von einer Einheit des Produktionsfaktors 1 eine (marginale) Einheit dieses Pro­duktionsfaktors zu ersetzen, sind demnach 2 Einheiten des Produktionsfaktors 2 erforderlich; betragt das Einsatzniveau von Faktor 1 hingegen 0,5, so sind hierfiir bereits 4 Einheiten von Faktor 2 erforderlich.

Eine Isoquante, die - wie durch die gestrichelten Bereiche in Abbildung 23 ange­deutet - nicht monoton fa1lend oder nicht konvex zum Ursprung verlauft, wtirde einen Widerspruch zum Effizienzpostulat bedeuten. In beiden FaIlen wilrden Ein­satzfaktoren verschwendet, da sich die Ausbringungsmenge x bereits mit gerin­geren Faktoreinsatzmengen herstellen lieBe.

-_....:....._ X=X

Abb. 23: Ineffiziente Bereiche einer Isoquante

In den beiden riickwarts gekriimmten Bereichen der Isoquante lieGe sich die Aus­bringungsmenge xmit geringerem Einsatz von Faktor 1 im oberen Teil bzw. von Faktor 2 im unteren Teil der Abbildung erzeugen, indem man einen Produktions­punkt auf der senkrechten bzw. waagerechten durchgezogenen Linie wahlt. Pro­duktionsaltemativen im mittleren gestrichelten Bereich des Kurvenzugs werden durch die konvexe Riille dominiert; dies bedeutet, daB die beiden ihn begrenzen­den Punkte entsprechend kombiniert werden mussen.

Page 61: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 49

2.2.1.4 Typen neoklassischer Produktionsfunktionen

Die zuvor eingehend diskutierte COBB-DouGLAs-Produktionsfunktion ist als Spezialfall einer Gruppe von neoldassischen Produktionsfunktionen anzusehen, die die gemeinsame Eigenschaft aufweisen, daB ihre Substitutionselastizitat tiber den gesamten Funktionsverlauf konstant ist (constant elasticity of substitution). Die Substitutionselastizitiit (1 kl gibt an, wie sich das EinsatzverhaItnis zweier Produktionsfaktoren k und 1 verschiebt, wenn sich die Grenzrate der Substitution marginal andert.

d rk

-.-!L rk d rk

rl rz slk (1kl =---=--.-d slk d slk rk

Dieser weitergehende Ansatz einer neoldassischen Produktionsfunktion wird da­her als CES-Funktion bezeichnet. Der Nachweis, daB die COBB-DOUGLAS-Pro­duktionsfunktion eine CES-Funktion ist, laBt sich wie folgt ftihren:

dx --- 1

slk = drk = ak .!L= ak .(rk)-d x al rk al rl drl

d slk _ ak (rk )-2 ak r? d rk - - al . -;:; = --;;;. rl

rl

Die COBB-DOUGLAS-Produktionsfunktion weist demnach eine konstante Substi­tutionselastizitat von 1 auf. Die allgemeine Formulierung einer CES-Produktions­funktion lautet (vgl. FANDEL [1996], S. 81 ff.):

Page 62: Produktionstheorie ||

50 2. Ertragsgesetzliche Produktionsfunktionen

mit: al,a2 >0 oder -1<al,a2 <0

Falls es sich um eine homogene Funktion handelt, entspricht der Homogenitats­grad ihrer Skalenelastizitat. Der HomogeniUitsgrad dieser Funktion laBt sich wie folgt iiberpriifen:

x(ll) = q>(Il. Tl ,Il· T2,···,Il· Tn)

1

= (Cl (Il· Tl)-al + c2 (Il· T2)-al + ... +cn(ll· Tn)-al ) ~

=[Il-al .(ClTl-al +C2T2-al+ ... +CnTn-al)]

1

u2

Diese Funktion ist somit homogen vom Grade k = al I a2. Durch geeignete Wahl der Parameter al,a2 lassen sich konstante, abnehmende oder auch zuneh­mende Skalenertdige modellieren:

konstante Skalenertdige

abnehmende Skalenertrage

zunehmende Skalenertrage

Die konstante Substitutionselastizitat (Ikt einer allgemeinen CES-Produktions­funktion laBt sich wie folgt berechnen:

Page 63: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 51

2.2.2 Produktionsplanung im Rahmen der neoklassischen Produktionstheorie

Die Produktionsplanung sucht nach eindeutigen Entscheidungen tiber geplante Ausbringungsmengen und die dafiir erforderlichen Faktoreinsatzmengen. Die bisherigen mengenorientierten Betrachtungen der Produktionsfunktion erweisen sich hierfiir als nicht ausreichend, da sie lediglich Informationen tiber effiziente und ineffiziente Bereiche liefem. Da z.B. laut Definition samtliche Punkte auf einer Isoquante die effiziente HersteUung der Ausbringungsmenge x ermogli­chen, ist zur eindeutigen Auswahl einer "besten" Produktionsaltemative eine Bewertung der Faktoreinsatzmengen mit ihren Preisen erforderlich. Bei Verfol­gung der Zielsetzung Kostenminimierung Hillt sich dann die optimale Faktorein­satzmengenkombination zur Erzeugung von x ermitteln. 1m Rahmen der Ge­winnmaximierung ist zusatzlich zur optimalen Faktoreinsatzmengenkombination diejenige Ausbringungsmenge zu bestimmen, fUr die die Differenz aus Erlosen und Kosten maximal wird. Fiir weitere Teilbereiche der Produktionsplanung, die den Ablauf des Produktionsprozesses betreffen - z.B. LosgroBenentscheidungen, Reihenfolgeplanung, Kapazitatsnutzung - bietet die neoklassische Produktions­theorie aufgrund ihres hohen Aggregationsgrades keine direkten Ansatzpunkte.

2.2.2.1 Kostenminimierung

Ais Kriterium zur Ermittlung derjenigen Faktoreinsatzmengenkombination, die heranzuziehen ist, wenn bei gegebenen Faktorpreisen eine bestimmte Ausbrin­gungsmenge x zu minimalen Kosten hergesteUt werden soU, dient die Minimal­kostenkombination. Diese wird im folgenden zunachst graphisch und anschlie­Bend analytisch hergeleitet.

In Abbildung 24 ist folgende Situation dargesteUt: Die Isoquante fiir x = x um­faSt samtliche effizienten Kombinationen der Produktionsfaktoren rl und r2 zur HersteUung der Ausbringungsmenge x. Die gestrichelt eingezeichnete Isoko-

Page 64: Produktionstheorie ||

52 2. Ertragsgesetzliche Produktionsfunktionen

stengerade K gibt samtliche Faktoreinsatzmengenkombinationen an, die sich bei gegebenen Faktorpreisen ql und q2 mit einem - willldirlich gewahlten - Kosten­niveau von K realisieren lassen. Da die Isoquante und die Isokostengerade kei­nen gemeinsamen Punkt aufweisen, ist es offensichtlich nicht moglich, mit Ko­sten in Hohe von K die Ausbringungsmenge x herzustellen.

Durch Parallelverschiebung der Isokostengerade nach innen bzw. auBen gelangt man zu niedrigeren bzw. hOheren Kostenniveaus. Die Minimalkostenkombination (MKK) liegt bei dem niedrigsten Kostenniveau, mit dem sich die Ausbringungs­menge x realisieren laBt; dies ist in der Abbildung bei dem Kostenniveau K min

durch den Tangentialpunkt von Isoquante und Isokostengerade gegeben. Zwar laBt sich die Ausbringungsmenge x auch mit einem hoheren Kostenniveau, z.B. Kl, herstellen - hier wei sen Isoquante und Isokostengerade sogar zwei Schnitt­punkte auf -, jedoch wird dadurch das Ziel der Kostenminimierung verfehlt.

\ \

\ \ \'K

Abb. 24: Minimalkostenkombination

X=X

Der in der graphischen Herleitung bestimmte Tangentialpunkt von Isoquante und Isokostengerade ist dadurch gekennzeichnet, daB die beiden beteiligten Funktio­nen die gleiche Steigung aufweisen. Da die Steigung der Isoquante durch die Grenzrate der Substitution angegeben wird und die Steigung der Isokostengerade dem umgekehrten VerhaItnis der Faktorpreise entspricht, muB fUr die Minimalko­stenkombination die folgende Beziehung gelten:

Page 65: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion

_ d rk _ x(l)' _ ql skl-------,-­

d rl x(k) qk

53

fUr k,l = 1, ... ,n

Diese Beziehung laBt sich mit Hilfe eines Lagrange-Ansatzes aus dem folgenden Optimierungsproblem herleiten:

n

min K = L'i ·qi i=1

Die zugehorige Lagrange-Funktion lautet:

n Lh,r2,···,rn ,,t) = L'i ·qi -,t(x-qJh,r2,···,rn ))

i=1

Die notwendige Bedingung 1. Ordnung fUr ein Minimum ist erfiillt, wenn die partiellen Ableitungen der Lagrange-Funktion eine Nullstelle aufweisen:

aL ! a,t =X-qJ(rl,r2, .. ·,rn )=O

aL aqJ! -=q.+,t·_=o ar.. I ar..

I I

i =1, ... ,n

i =1, ... ,n

qk _ -,t·X(k)' _ X(k)' _ d rl _ ~ -- --------slk

ql -,t. X(l)' X(l)' d rk

Bei konvexem Verlauf der Isoquante ist diese Bedingung zugleich notwendig und hinreichend.

1m oben eingefiihrten Beispiel laBt sich fUr die Ausbringungsmenge 5 die Mini­malkostenkombination bei gegebenen Faktorpreisen in Hohe von PI = 1 und P2 = 4 wie folgt ermitteln: In die Isokostengerade

K= rl +4·r2

setzt man fiir r2 die Isoquantengleichung ein, so daB sich eine Funktion ergibt, die ausschlieBlich von rl abhangig ist.

Kh) = rl +4· rl-2

Page 66: Produktionstheorie ||

54 2. Ertragsgesetzliche Produktionsfwiktionen

Durch Aufiosen der ersten Ableitung ergibt sich die in der Minimalkostenkombi­nation eingesetzte Menge von Produktionsfaktor 1, durch Einsetzen dieses Wer­tes in die Isoquantengleichung die zugehorige Menge von Faktor 2.

I

K'h) = 1-8· rl-3 ";'0

=> rl = 2 r2 = 0,25

Die Ausbringungsmenge 5 laBt sich somit zu Kosten von 3 Geldeinheiten produ­zieren.

Der Lagrange-Parameter A, laBt sich allgemein interpretieren als die durch eine marginale Vedinderung der zugehorigen Restriktionskonstanten hervorgerufene Anderung des Zielfunktionswerts. In diesem Fall entspricht A, somit den zusatzli­chen Kosten bei marginaler ErhOhung der geforderten Ausbringungsmenge, d.h. den Grenzkosten.

Nun reicht es fUr die Produktionsplanung in der Regel nicht aus, die minimalen Kosten ffir eine bestimmte Ausbringungsmenge zu kennen, vielmehr ist die Ko­stenfunktion als allgemeiner Zusammenhang von Ausbringungsmenge und Ko­sten von Interesse. Zumindest fUr homogene Produktionsfunktionen laBt sich die­ser Expansionspfad der Kosten in Abhiingigkeit von der Ausbringungsmenge unmittelbar herleiten:

cph ' r2 , ... , rn) sei homogen vom Grade k.

[0 = {rt0 ,r~ , ... ,rnO) sei die Minimalkostenkombination fUr x = 1

Dann ist A.. [0 die Minimalkostenkombination ffir x = A. k und somit

cp( A. . rl ° , A. . r2 ° , ... , A. . rn ° ) = A. k . 1 = x

Urn die Ausbringungsmenge von 1 auf x zu erhOhen, muB [0 daher mit A. = xllk

multipliziert werden:

i = l, ... ,n

Durch Einsetzen dieser Beziehung in die Kostendefinition erhiilt man die folgen­de Kostenfunktion:

n n K(x) = LTi(X)·qi = LTio .qj . x 11k

i=1 i=1

Page 67: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 55

Wahrend bei linearhomogenen Produktionsfunktionen die Kosten offensichtlich linear mit der Ausbringungsmenge ansteigen, erhiilt man ffir eine homogene Pro­duktionsfunktion mit abnehmenden Skalenertragen (Homogenitat yom Grade k < 1 ) eine streng konvexe Kostenfunktion mit steigenden Grenzkosten:

1 k<1 => r=->1

k

K{x} = (t1jO .qiJ. xr 1=1

K'(x)=r·(t1j0.QiJ.Xr-1 >0 1=1

KII(x)=r.(r-1)·(t1j0.QiJ.xr-2 >0 1=1

Da ihre zweite Ableitung streng positiv ist, muG die neoklassische Kostenfunk­tion bei totaler Faktorvariation ftir Produktionsfunktionen mit abnehmenden Skalenertragen streng konvex sein.

Die Kostenfunktion Hillt sich ffir das oben eingefUhrte Beispiel wie folgt herlei­ten: Die Isoquante fUr die Ausbringungsmenge x = 1 lautet:

r: - 023.3 .,-2 2 -, ·'1

Einsetzen in die Kostendefinition ergibt:

K ='1 +4(0,23.3 . '1-2 )

- I

K'h)= 1-8.0,23,3 .rl-3~0

=> rIO = 0,3345 ° '2 = 0,04181

Somit lautet die Kostenfunktion:

K(x) = (1. rIo +4· r~). x1.T = 0,50175. x1.T

mit: K{5} = 3

Die Grenzkosten sowie die zweite Ableitung der Kostenfunktion ergeben sich als:

Page 68: Produktionstheorie ||

56 2. Ertragsgesetzliche Produktionsfunktionen

K'(x) = 0,5575.x°,T

K"(x) = 0,00619· X-oJ> ° Weiter ist zu untersuchen, wie sich die Kosten entwickeln, wenn nicht samtliche Faktoreinsatzmengen gleichzeitig variiert werden, sondem zwischen variablen und fixen Produktionsfaktoren unterschieden wird. So lassen sich die direkt in die Produktion eingehenden Verbrauchsfaktoren als variabel ansehen, wahrend die in der Planungsperiode vorhandenen Betriebsmittel einen festen Bestand aufweisen.

Ohne Beschrankung der Allgemeinheit sei zunachst angenommen, daB lediglich die Einsatzmenge des ersten Produktionsfaktors variiert wird und die restlichen Faktoreinsatzmengen konstant gehalten werden. Es wird also die partielle Pro­duktionsfunktion bezuglich des ersten Produktionsfaktors betrachtet:

x(l) = qJlh)

Durch Inversion dieser Funktion erhiilt man die F aktoreinsatifunktion, die die ffir eine bestimmte Ausbringungsmenge x erforderliche Einsatzmenge des Produk­tionsfaktors 1 angibt:

rl = qJl1(x)

Da die Produktionsfaktoren i = 2, ... ,n in konstanten Mengen 11 eingesetzt wer­den, fallen deren Kosten unabhangig von der Ausbringungsmenge als Fixkosten an:

n

KF = Lqi ·11 i=2

Die Gesamtkostenfunktion setzt sich nunmehr aus den variablen, von der Aus­bringungsmenge x abhangigen Kosten und den Fixkosten K F zusammen:

K = ql . qJl1 (x) + KF

Da die Faktoreinsatzfunktion als Umkehrfunktion der streng konkav verlaufen­den Produktionsfunktion bei partieller Faktorvariation einen streng konvexen Verlauf hat, ergibt sich auch ffir die zugehorige Kostenfunktion ein so1cher Ver­lauf, wie er in Abbildung 25 dargestellt ist. Ausgehend yom Fixkostenniveau K F

steigen die Kosten mit der Ausbringungsmenge x immer starker an. Dies laBt sich damit begriinden, daB bei steigenden Ausbringungsmengen die vorhandenen Mengen der nicht variierten Produktionsfaktoren relativ immer knapper werden

Page 69: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 57

und daher durch immer groBere Mengen des variablen Faktors substituiert wer­den mtissen, so daB selbst bei konstantem Preis qI die fiir diesen Produktions­faktor anfallenden Kosten progressiv ansteigen.

x

Abb. 25: Kostenfunktion bei partieller Faktorvariation

Ais Ergebnis dieser kostentheoretischen Betrachtungen HiBt sich festhalten, daB lediglich fiir den Fall eines einzigen variablen Produktionsfaktors die Kosten­funktion tiber die Faktoreinsatzfunktion technologisch eindeutig determiniert ist. Bei Variation mehrerer oder samtlicher Produktionsfaktoren hingegen ist fiir ihre Herleitung zunachst ein OptimierungsprozeB erforderlich ist, durch den die Mi­nimalkostenkombination bestimmt wird; anschlieBend kann der Kostenexpan­sionspfad hergeleitet werden (vgl. KISTNER [1993a], S. 32).

2.2.2.2 Gewinnmaximierung

Bei der Zielsetzung der Gewinnmaximierung besteht die Planungsaufgabe darin, gleichzeitig die Ausbringungsmenge und die zugehorige Faktoreinsatzmengen­kombination so zu bestimmen, daB die Differenz aus Erlosen und Kosten maxi­mal wird. Die Erlose ergeben sich im einfachsten Fall als Produkt aus Absatz­preis und Ausbringungsmenge. Es ist somit folgendes Optimierungsproblem zu losen:

n G=P·X-Lqi·1f ~ max!

i=I

Page 70: Produktionstheorie ||

58 2. Ertragsgesetzliche Produktionsfunktionen

u. d. N.: X = q>(rl ,r2' ... ,rn )

Die zugehOrige Lagrange-Funktion lautet:

n L(x,rl,r2,···,rn ,..1.) = p·x- Lli 'qi -..1.(x-q>(rl,r2,···,rn ))

i=l

Daraus ergeben sich als notwendige Bedingungen erster Ordnung:

(1)

(2)

(3)

aL ! -=p-..1.=O ax aL ! a A = x-q>(rl,r2,···,rn )=O

a L =(p-..1.). a x -qi +..1,. a q> ~O ali ali ali

Bedingung (1) HiBt sich wie folgt umformen:

(1') p = A

i = 1, ... ,n

Damit geben die Bedingungen (2) und (3) die bereits im vorhergehenden Ab­schnitt hergeleiteten Bedingungen fUr die Minimalkostenkombination an. Bedin­gung (1') entspricht der aus der Preistheorie fUr den Fall des vollkommenen Marktes bekannten OptimaliUitsbedingung, daB die gewinnmaximale Angebots­menge erreicht ist, wenn die Grenzkosten A einer zusatzlich produzierten Einheit gerade gleich dem Marktpreis p des Produktes sind. Die jeweils mit der Minimal­kostenkombination produzierte Ausbringungsmenge ist daher so lange zu erhO­hen, wie die Grenzkosten einer zusatzlichen Produkteinheit noch geringer sind als der fUr diese erzielbare zusatzliche Erlos.

Da sich bei einer linearhomogenen Produktionsfunktion - wie zuvor gezeigt - der Kostenexpansionspfad linear entwickelt, sind die Grenzkosten konstant und identisch mit den variablen Stiickkosten. In diesem Fall betragt die gewinnmaxi­male Ausbringungsmenge entweder Null, falls die Grenzkosten hOher sind als der Marktpreis des Produkts, oder unendlich, falls der Marktpreis hoher ist als die Grenzkosten. Die Ausbringungsmenge wird dann allenfalls durch die (modell­extern gegebenen) verfUgbaren Kapazitaten oder durch Faktorbeschaffungsmog­lichkeiten beschrankt.

1m Fall abnehmender Skalenertriige bzw. bei einer konvexen Kostenfunktion laBt sich hingegen die gewinnmaximale Ausbringungsmenge eindeutig bestimmen:

Page 71: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 59

G(x) = p·x- K(x) ,

G'(x) = p - K'(x)";'O ~ p = K'(x)

G"(x) = -K"(x) < 0

Die erste Ableitung als notwendige Bedingung fUr ein Extremum liefert die be­reits bekannte OptimalWitsbedingung "Preis = Grenzkosten", die aufgrund der Konvexitat der Kostenfunktion strikt negative zweite Ableitung bildet die hinrei­chende Bedingung ffir ein eindeutiges Gewinnmaximum. Diese Situation ist in Abbildung 26 dargestellt; die gewinnmaximale Produktionsmenge x * ergibt sich beim Schnittpunkt von Marktpreis und Grenzkostenfunktion.

P K'

x*

Abb. 26: Gewinnmaximale Ausbringungsmenge

K'

x

Fur das oben eingefiihrte Beispiel lautet die Gewinnfunktion bei einem Absatz­preis von 1:

G(x) = x - 0,50175· x1,T

Daraus ergibt sich als gewinnmaximale Ausbringungsmenge:

x * = ( 1 )9 = 192 0,5575

Page 72: Produktionstheorie ||

60 2. Ertragsgesetzliche Produktionsfunktionen

2.2.3 Geitungsbereich der neoklassischen Produktionsfunktion

Die in den vorangegangenen Abschnitten dargestellte neoklassische Produktions­theorie hat sich in vielen Anwendungsgebieten sowohl der Volkswirtschaftslehre als auch der Betriebswirtschaftslehre empirisch bewahrt. Die Existenz von Funk­tionsverHiufen mit neoklassischen Eigenschaften wurde in den verschiedensten Bereichen okonometrisch nachgewiesen.

So wurde z.B. die gesamtwirtschaftliche Produktionsfunktion mit den beiden ag­gregierten Produktionsfaktoren Arbeit (A) und Kapital (K) fUr das Deutsche Reich in den Jahren 1850 bis 1913 mit Hilfe einer COBB-DOuGLAs-Funktion wie folgt abgebildet:

x=09361.l0124t .AO,757 ·KO,243 , ,

Es handelt sich offensichtlich urn eine Funktion mit konstanten Skalenertragen, die Niveaukonstante ao ist um einen Ausdruck fUr den im Zeitablauf zunehmen­den technischen Fortschritt erweitert worden.

Eine lihnliche Schatzung flir die Nachkriegszeit flihrte zu folgender Funktion:

x = eO,019t . A 0,747 . K O,343 . M O,228

Rier werden als zusatzlicher Faktor die realen Importe (M) beriicksichtigt. Die zunehmenden Skalenertrage sind ein Indiz dafiir, daB die deutsche Wirtschaft in der Nachkriegszeit wieder Tritt fassen und in ihre apparative Ausstattung hinein­wachsen muBte. Diese und weitere Schatzungen von gesamtwirtschaftlichen Pro­duktionsfunktionen findet man bei KRELLE (vgl. KRELLE [1969], S. 155 ft).

Eine empirische Untersuchung von Produktionsfunktionen flir die deutsche Che­mieindustrie in den Jahren 1960 bis 1975 hat ALBACH [1980] durchgeffihrt. Er kommt z.B. zu den folgenden Ergebnissen:

Beiersdorf AG:

x = eO,04.t . A 0,84 . K O,39

BASFAG:

x = e°,Q7.t ~ A 0,51. K°,49

Wie man sieht, unterscheiden sich diese Firmen deutlich in den Werten fiir die Rate des technischen Fortschritts und die Arbeits- und Kapitalproduktivitat. Mit Rilfe einer derartigen Erhebung lassen sich sowohl Aussagen fiber die Stellung eines bestimmten Untemehmens innerhalb seiner Branche treffen als auch zeitli-

Page 73: Produktionstheorie ||

2.2 Die neoklassische Produktionsfunktion 61

che Uingsschnittanalysen fUr einzelne Untemehmen oder die gesamte Branche durchfiihren (vgl. nochmals ALBACH [1980], S. 61 ff.).

Weitere Anwendungsfelder der neoklassischen Produktionsfunktion liegen in den Bereichen der Montanindustrie, der Grundstoffindustrie sowie der Energiever­sorgung. Obwohl sich bereits mit der einfachen COBB-DouGLAs-Produktions­funktion recht gute Anpassungen an die empirischen Daten erzielen lassen, fUhrt die Verwendung anderer Typen der neoklassischen Produktionsfunktion, insbe­sondere der CES-Funktion, zu noch besseren Ergebnissen.

Dennoch ist die neoklassische Produktionsfunktion fUr betriebswirtschaftlich re­lev ante Aussagen letztlich unzureichend. Dies liegt zum einen an ihrem hohen Aggregationsgrad, der es nicht erlaubt, Aussagen tiber Vorgiinge an einzelnen Produktionsstellen unter Berticksichtigung ihrer Einbettung in den gesamtbe­trieblichen MaterialfluB zu machen. Disaggregierte Aussagen sind allenfalls fUr die einstufige Einproduktfertigung moglich, die jedoch nur eine geringe prakti­sche Relevanz aufweist. Andererseits ist die fUr die stetige Differenzierbarkeit der Produktionsfunktion erforderliche Voraussetzung der beliebigen Teilbarkeit von Produktionsfaktoren und Produkten oftmals erst bei einem hohen Aggrega­tionsgrad erftillt.

Ein weiteres Problem liegt darin, daB die Fundierung der neoklassischen Theorie in Form von Postulaten erfolgt, deren Geltung zwar empirisch tiberprtift, aber nicht formallogisch nachgewiesen werden kann. Der Erkenntniswert ihrer Aussa­gen steht und fallt daher mit der Gtiltigkeit dieser Postulate. Bei einer eingehen­den Betrachtung der Produktionsverhliltnisse in der industriellen Fertigung erwei­sen sich jedoch einige dieser Voraussetzungen als unrealistisch (vgl. zur Kritik an der Gtiltigkeit des Ertragsgesetzes GUTENBERG [1983], S. 318 ff.):

• So ist die Annahme der partiellen Substitutionalitiit samtlicher Produktions­faktoren vielfach nicht gerechtfertigt. Vielmehr liegen limitationale Faktorein­satzmengenverhliltnisse vor, wenn feste Relationen zwischen verschiedenen Faktorarten technologisch vorgegeben sind. Dies ist z.B. fUr die Anzahl der benotigten Bauteile in Montageprozessen der Fall.

• Wenn jedoch in einem ProduktionsprozeB feste Faktoreinsatzmengenverhlilt­nisse bestehen, reduziert sich auch die Produktionsfunktion bei partieller Faktorvariation auf einen einzigen effizienten Punkt. Ein Mehreinsatz des va­riablen Faktors wUrde zu dessen Verschwendung fUhren, ein Mindereinsatz zur Verschwendung der anderen an der Produktion beteiligten Produktions­faktoren.

Page 74: Produktionstheorie ||

62 2. Ertragsgesetzliche Produktionsfunktionen

• Auch die bei der partiellen Faktorvariation vorgenommene Einteilung der Pro­duktionsfaktoren in fixe und variable Faktoren, wobei die Betriebsmittel als fix angesehen werden, ist zu kritisieren. In der Regel wird eine Anderung der Ausbringungsmenge gerade dadurch ermoglicht, daB die Betriebsmittel ihre Leistungsabgabe variieren. Hier ist also ein anderer Substitutionsbegriff erfor­derlich.

Dennoch hat die neoklassische Produktionsfunktion fiir die weitere Entwicklung der Produktionstheorie einen nicht nur historischen Wert. Wie sich bei der Unter­suchung der nachfolgenden produktionstheoretischen Konzepte zeigen wird, las­sen sich dort unter realistischeren Voraussetzungen immer wieder neoklassische Eigenschaften nachweisen.

2.3 Die lineare Aktivitiitsanalyse Die lineare Aktivitiitsanalyse ist ein produktionstheoretischer Ansatz, der von linear limitationalen FaktoreinsatzmengenverhaItnissen ausgeht, wie sie durch die LEONTIEFF-Produktionsfunktion beschrieben werden. Die Aktivitiitsanalyse wur­de in den 50er Jahren fiir mikrookonomische Betrachtungen begriindet und in den 60er Jahren auf betriebswirtschaftliche Zusammenhiinge fibertragen. Zu den Grundlagen der linearen Aktivitatsanalyse vgl. KOOPMANS [1951], DEBREU [1959], HILDENBRAND I HILDENBRAND [1975] und zur betriebswirtschaftlichen Anwendung ALBACH [1962a], DAN0 [1965] sowie KISTNER [1993a, 1996], FANDEL [1996].

1m Gegensatz zur klassischen und neoklassischen Produktionstheorie, die be­stimmte Eigenschaften der Produktionsfunktion voraussetzen, ohne ihre Giiltig­keit zu hinterfragen, geht die lineare Aktivitatsanalyse von wenigen, einfachen Grundannahmen und Postulaten aus und leitet aus diesen die fUr sie relevanten Aussagen her. Dabei nimmt sie starker auf die technischen Zusammenhiinge der Produktion Bezug als die zuvor behandelten Ansatze.

1m AnschluB an die Darstellung der Grundbegriffe der linearen Aktivitiitsanalyse in Abschnitt 2.3.1 wird in Abschnitt 2.3.2 die zu einer linearen Technologie ge­horende Produktionsfunktion unter verschiedenen Aspekten untersucht. In Ab­schnitt 2.3.3 wird die Produktionsplanung im Rahmen der linearen Aktivitats­analyse behandelt und in Abschnitt 2.3.4 eine abschlieBende Beurteilung des Konzepts der linearen Aktivitatsanalyse vorgenommen.

Page 75: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 63

2.3.1 Grundbegriffe

Von grundlegender Bedeutung fUr die lineare Aktivitiitsanalyse ist der bereits in Abschnitt 1.1.2 eingefiihrte Begriff der Produktionsaltemative bzw. der Aktivitat y . Darunter versteht man in diesem Zusammenbang eine zuUissige Kombination von Faktoreinsatzmengen, die bei Anwendung eines gegebenen Produktionsver­fahrens zu einer bestimmten Kombination von Ausbringungsmengen fiihrt:

Die Menge der in einem Untemehmen aufgrund der verfugbaren Produktionsver­fahren technisch moglichen Aktivitiiten wird als Technologiemenge T bezeich­net:

T:= h = (r;J:) I ~ ist technisch moglich}

Sie enthiilt sowohl effiziente als auch ineffiziente Aktivitiiten. Bei den folgenden Betrachtungen werden eventuell gegebene Beschriinkungen bezuglich der Ein­satz- oder der Ausbringungsmengen zuniichst auBer acht gelassen, da die techni­sche Durchfiihrbarkeit und nicht die tatsiichliche oder rechtliche Zuliissigkeit der Aktivitiiten im Vordergrund steht.

1m Rahmen der Aktivitiitsanalyse werden folgende Eigenschaften in Form von grundlegenden Axiomen postuliert (vgl. DEBREU [1953], S. 40; KISTNER [1996], Sp.1546):

(1) Die Technologiemenge T ist eine abgeschlossene Menge im 9t~+m.

(2) Die Nullaktivitiit ist Element der Technologiemenge:

~ =(Q;Q)e T

(3) Unmoglichkeit des Schlaraffenlandes: Es ist keine positive Ausbringungs­menge moglich, ohne Produktionsfaktoren einzusetzen:

(4) Technisch mogliche Produktionspunkte sind nicht reversibel:

Tn(-T)=0

Gegenstand der im folgenden betrachteten linearen Aktivitiitsanalyse ist eine spe­zielle Technologie, die durch die Proportionalitiit, die Additivitiit und die Mog­lichkeit der Verschwendung als weitere zentrale Eigenschaften charak:terisiert werden kann.

Page 76: Produktionstheorie ||

64 2. Ertragsgesetzliche Produktionsfunktionen

2.3.1.1 Proportionalitat

Falls eine Produktionsaltemative y technisch rnoglich ist, kann auch jede Pro­duktionsaltemative )! * = ,t.)! fUr bellebige It ~ 0 realisiert werden.

~ = (r;:!) E T

~ l = It . ~ = (It. r; It·:!) E T

Diese Aussage gilt, falls sowohl die Produktionsfaktoren als auch die Produkte beliebig teilbar sind und keinerlei Bestandsgrenzen oder Produktionsbeschran­kungen bestehen. Durch die Wahl geeigneter Ma8stiibe fiir die an der Produktion beteiligten Gliterarten Hillt sich diese Voraussetzung zumindest naherungsweise erflillen. Sollten Bestandsgrenzen oder Produktionsbeschrankungen bestehen, so konnen gegebenenfalls nicht alle technisch rnoglichen Aktivitaten auch tatsach­lich realisiert werden. Auf derartige Restriktionen wird in Abschnitt 2.3.2 einge­gangen.

Ein ProduktionsprozeJ3 II ist die Zusammenfassung aller auf dernselben techni­schen Verfahren beruhenden Aktivitaten. Diese lassen sich durch die proportio­nale Variation einer Ausgangsaktivitat 1 darstellen, bei der samtliche Faktorein­satzrnengen und samtliche Ausbringungsrnengen urn den gleichen, nicht­negativen Faktor It erhOht oder reduziert werden.

I1:={lll =1t·~=(It·r;It·:!); It ~ o}

Flir samtliche auf einern bestimmten ProduktionsprozeB gelegenen Aktivitaten gelten aufgrund der Proportionalitiitsannahme folgende Eigenschaften:

• Die Produktionskoeffizienten, die das VerhaItnis von Faktoreinsatzrnengen zu Ausbringungsrnengen angeben, sind konstant:

r.. aij = -'- = const.

Xj i = 1, ... ,n; j = 1, ... ,m

• Das Verhiiltnis der Einsatzmengen zweier beliebiger Produktionsfaktoren i und kist konstant:

r.. aik = -L = const.

rk i,k = 1, ... n

• Das Verhiiltnis der Ausbringungsmengen zweier beliebiger Produktej und I ist konstant:

Page 77: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 65

x· b jl =.-l... = const. x, j,l = l, ... ,m

Die Koeffizienten b jl' die angeben, wieviele Einheiten des Produktes j bei der Durchffihrung des Produktionsprozesses gleichzeitig mit einer Einheit des Produk.tes I entstehen, werden als Kopplungskoeffizienten bezeichnet.

In einer linearen Technologie sind sowohl die Faktoreinsatzmengen als auch die Ausbringungsmengen der Aktivitiiten auf einem ProzeBstrahl limitational. Es ist daher nicht moglich, bei gleicher Ausbringung die Einsatzmenge eines Produk­tionsfaktors zu reduzieren und dafiir von einem anderen Produktionsfaktor mehr einzusetzen, oder bei gleichem Faktoreinsatz die Ausbringungsmenge eines Pro­duktes zu erhohen, indem bei einem anderen Produkt auf einen Teil der Ausbrin­gungsmenge verzichtet wird.

Aufgrund dieser Eigenschaften laSt sich fUr den Einproduktfall ein Produktions­prozeB als ein im Ursprung beginnender ProzejJstrahl im positiven Orthanten des Giiterraums darstellen. Abbildung 27 zeigt die Projektion eines so1chen ProzeB­strahls in die r1 / r2 -Ebene.

n

Abb. 27: ProduktionsprozeS

Jeder Punkt auf dem ProzeBstrahl entspricht einer moglichen Aktivitiit des Pro­duktionsprozesses n. Die als Punkt hervorgehobene Aktivitiit fiihrt gerade zu der Ausbringungsmenge x = 1. Durch proportionale Variation dieser Basisaktivitiit gelangt man fiir A. < 1 zu Ausbringungsmengen von weniger als eins; die zugeho­rigen Aktivitiiten liegen auf dem ProzeBstrahl n zwischen dem Ursprung und der

Page 78: Produktionstheorie ||

66 2. Ertragsgesetzliche Produktionsfunktionen

Basisaktivitat. Die Aktivitaten zu A > 1 liegen auf dem ProzeBstrahl oberhalb der Basisaktivitat und ruhren zu groBeren Ausbringungsmengen als eins.

Wahrend fiir den Mehrproduktfall die in Abschnitt 1.1.4 eingefiihrte Effizienzde­finition herangezogen werden moB, laBt sich im Einproduktfall die Effizienz von Produktionsprozessen aufgrund der Normierung auf die Ausbringungsmenge 1 anhand der Produktionskoeffizienten iiberpriifen:

Ein ProduktionsprozeB rro mit den Produktionskoeffizienten ap, i = 1, ... , n ist effizient, wenn es keinen anderen ProduktionsprozeB rr mit Produktionskoeffizienten ai' i = 1, ... ,n gibt, so daB gilt:

i = 1, ... ,n

und a· <a~ I I rur mindestens ein i

In Abbildung 28 sind vier Produktionsprozesse angegeben, dabei ist jeweils die Aktivitat, die zu einer Ausbringungsmenge von 1 fiihrt, durch einen Punkt her­vorgehoben. Offensichtlich ist der ProduktionsprozeB rr 3 ineffizient, da sich die Ausbringungsmenge x = 1 auf dem ProzeB rr4 mit geringerem Einsatz von bei­den Produktionsfaktoren herstellen laBt. Bei rr3 sind beide Produktionskoeffizi­enten groBer als bei rr4. Effizient sind somit die Prozesse rr 1, rr 2 und rr4.

~~~~------------------~ fl

Abb. 28: Effizienz von Produktionsprozessen

Die fiir eine lineare Technologie geltenden Faktoreinsatifunktionen lassen sich aus der Definition der Produktionskoeffizienten herleiten:

Page 79: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse

Einproduktfall: 'i = ai . X

m

Mehrproduktfall: 'i = ~>ij . X j

j=l

Fur die Produktfunktionen gilt hingegen:

Einproduktfall: x=~n {.l.} I ai

Mehrproduktfall: X j = ~n {l} I aij

67

i = l, ... ,n

i = t, ... ,n

j=l, ... ,m

Dieser Funktionstyp wird auch als LEONTIEFF-Produktionsfunktion bezeichnet. Aufgrund der Limitationalitat der Einsatzfaktoren wird die herstellbare Ausbrin­gungsmenge dureh den relativ knappsten Faktor determiniert. Sollten andere Ein­satzfaktoren in einer groBeren Menge eingesetzt werden, als sie fUr die effiziente Erzeugung der Ausbringungsmenge erforderlieh sind, so werden diese uberschus­sigen Faktoreinsatzmengen versehwendet. Eine partie lie Faktorvariation fiihrt bei der LEONTIEFF-Produktionsfunktion also zu keiner Erhohung der Ausbrin­gungsmenge; diese kann vielmehr nur entlang des ProzeBstrahls, d.h. durch gleicbmaBige ErhOhung aller Faktoreinsatzmengen im Rahmen der totalen Fak­torvariation, gesteigert werden.

So werden z.B. zur Herstellung eines Tisches eine Tischplatte, vier Tischbeine, eine vorgegebene Anzahl Sehrauben sowie bestimmte Mengen an Leim, Farbe usw. benotigt. Stehen fur die Produktion lediglieh 38 Tisehbeine zur Verfugung, wahrend bei den anderen Einsatzfaktoren keine Engpasse auftreten, so laBt sich die Ausbringungsmenge nieht uber neun Tisehe hinaus steigem. Es ist insbeson­dere nieht moglich, die ffir den zehnten Tisch fehlenden zwei Tischbeine zu er­setzen, indem vermehrt Tisehplatten oder andere Werkstoffe im Produktionspro­zeB eingesetzt werden.

Die Isoquante zu einer bestimmten Ausbringungsmenge besteht dernzufolge nur aus einem einzigen effizienten Punkt, da sieh die Reduktion der Einsatzmenge eines Produktionsfaktors nieht dureh erhohte Einsatzmengen der anderen Pro­duktionsfaktoren ausgleichen laBt; die Grenzrate der Substitution betragt dement­sprechend Null.

Page 80: Produktionstheorie ||

68 2. Ertragsgesetzliche Produktionsfunktionen

2.3.1.2 Additivitiit

Falls die Produktionsaltemativen 1..1 und l jede fUr sich technisch rnoglich sind, dann konnen sie auch gerneinsam durchgefiihrt werden; d.h. auch die Produk­tionsaltemative l = II + l2 laBt sich realisieren.

i = (r1; ;!1) E T

l2 = (r2; ;!2) E T

=> l = (rl +r2;;!1 +;!2) E T

So fiihrt z.B. die Addition der Aktivitaten (4,1;2) und (2,2;3) zu der Aktivitat (6,3;5). Dies ist in Abbildung 29 dargestellt. Urn den Drei-Giiter-Fall in einer zweidimensionalen Abbildung darstellen zu konnen, wird die Ausbringungsrnen­ge an den jeweiligen Produktionspunkten vermerkt.

6

5

4

3

2 x=3 •. - - --

1

o 1 2 3

Abb. 29: Addition von Aktivitaten

-. x=2

x=5 ..

4 5 6

Ahnlich wie bei der Proportionalitatseigenschaft gilt auch hier wieder, daB prin­zipiell eine beliebige Addition von zulassigen Aktivitiiten technisch rnoglich ist. Tritt jedoch der in der Realitat haufig anzutreffende Fall auf, daB zwei Aktivita­ten einen knappen Produktionsfaktor benotigen und dadurch in Konkurrenz zu­einander stehen, so konnen diese nicht rnehr unabhangig voneinander durchge­fiihrt werden. Auch in diesern Fall extemer Restriktionen ist die Menge der tat­siichlich realisierbaren Aktivitaten eine Teilrnenge der Technologiernenge.

Page 81: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 69

Durch Ausnutzung der Eigenschaften der Proportionalitat und der Additivitat von Aktivitaten ergibt sich die Moglichkeit, weitere Produktionsaltemativen als Kon­vexkombinationen y * der reinen Aktivitaten y 1 und y 2 zu realisieren: - - -

l =It·l +(l-It) ·l E T fiirO~It~l

Damit gehoren in Abbildung 30 samtliche Aktivitaten auf der Verbindungsstrek­ke zwischen den reinen Aktivitaten

I (I 1-) r=rl,r2;x

und

2 (22-) r = rl ,r2;x

zur Technologiemenge. Z.B. erhlilt man fill It = 0,3 die gemischte AktiviUit y *, zu der der ProduktionsprozeB rr* gehOrt. Einen auf diese Art konstruierten P-;o­duktionsprozeB rr* bezeichnet man als gemischten Proze8 bzw. als Prozej3kom­bination der beiden reinen Prozesse rrl und rr2.

~~------~----------------~ r 1 rl

I

Abb. 30: Gemischte AktiviUiten und Prozesse

Da Konvexkombinationen zwischen beliebigen Aktivitaten auf den beiden reinen ProzeBstrahlen rrl und rr2 zuHissig sind, gehort der gesamte Bereich zwischen diesen Produktionsprozessen, der in Abbildung 30 grau unterlegt ist, zur Tech­nologiemenge T.

Page 82: Produktionstheorie ||

70 2. Ertragsgesetzliche Produktionsfunktionen

Weiter ist zu bemerken, daB durch die Moglichkeit der ProzeBkombination nun­mehr die Moglichkeit besteht, - trotz der Limitationalitat auf jedem einzelnen ProzeBstrahl - bei der Herstellung einer bestimmten Ausbringungsmenge x = X die eingesetzten Mengen der Produktionsfaktoren im Rahmen der zur Verftigung stehenden Produktionsmoglichkeiten gegeneinander auszutauschen. Wie in Ab­bildung 30 gezeigt wird, laBt sich die Ausbringungsmenge x mit verschiedenen Kombinationen von Faktoreinsatzmengen herstellen. Zu jeder Einsatzmenge des Produktionsfaktors I aus dem Intervall [liZ' lil] laBt sich eine Einsatzmenge des Faktors 2 aus dem Intervall [ri, ri] angeben, so daB die zugehorige Ausbrin­gungsmenge x lautet. Der Bereich, in dem eine solche Substitution von Produk­tionsfaktoren tiber die Substitution von Produktionsprozessen moglich ist, wird als Substitutionsgebiet einer linearen Technologie bezeichnet.

Durch die Moglichkeit von ProzeBkombinationen konnen sich Aktivitaten, die auf effizienten reinen Prozessen liegen, als ineffizient erweisen. So wird, wie in Abbildung 31 dargestellt, der ProduktionsprozeB rr 2 aus Abbildung 28 durch Konvexkombinationen der Prozesse rr lund rr4 dominiert. Auch Konvexkombi­nationen von rr2 mit rri oder mit rr4 erweisen sich als ineffizient, denn nur die Kombination effizienter Prozesse kann zu effizienten gemischten Prozessen ftih­ren. Die Produktionsprozesse rr2 und rr3 sind somit bei Orientierung am oko­nomischen Prinzip fUr die Aufstellung von Produktionsprogrammen nicht mehr zu berucksichtigen.

Abb. 31: Effiziente ProzeBkombinationen

Page 83: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 71

2.3.1.3 Miiglichkeit der Verschwendung

Verschwendung bedeutet, daB ein Faktoreinsatz ohne Ausbringung technisch moglich ist, d.h. daB auf die produktive Verwendung eines oder mehrerer Pro­duktionsfaktoren verzichtet wird:

(r; Q) E T

Weiter ist es moglich, sich bereits produzierter Giiter zu entledigen, ohne daB hierfiir ein weiterer Faktoreinsatz erforderlich ist (free disposal):

(Q;-:!) E T

DaB ein so1ches Verhalten technisch moglich ist, steht auBer Frage. Es wird sich allerdings gegeniiber Produktionsaltemativen mit positiver Produktion als ineffi­zient erweisen; weiter wird es durch exteme Rahmenbedingungen wie z.B. ge­setzliche Umweltschutzvorschriften eingeschrankt.

2.3.1.4 Lineare Technologien

Eine Technologie, die die genannten Eigenschaften der Proportionalitat, der Ad­ditivitat und der Moglichkeit der Verschwendung aufweist, wird als lineare Technologie bezeichnet. Aus der Proportionalitatseigenschaft folgt die lineare Limitationalitat der beteiligten Giitermengen. Die Technologiemenge einer linea­ren Technologie ist die Vereinigungsmenge aller reinen und gemischten Aktivi­taten und Prozesse, die technisch moglich sind.

Bei Verzicht auf die Proportionalitatseigenschaft erhaIt man eine nichtlineare Technologie. Diese ist dadurch gekennzeichnet, daB sich die Produktionskoeffizi­enten sowie die VerhaItnisse zwischen Faktoreinsatzmengen und zwischen Pro­duktmengen entsprechend einer nichtlinearen Funktion entwickeln (vgl. noch­mals Abschnitt 1.2.3). Dementsprechend besteht nichtlineare Limitationalitat zwischen den beteiligten Giitermengen. Da jedoch die lineare Aktivitatsanalyse von groBerer theoretischer und auch praktischer Bedeutung ist, wird hier auf nichtlineare Technologien nicht weiter eingegangen. Zu nichtlinearen Technolo­gien vgl. z.B. WITTMANN [1966], S. 24 - 35 und HILDENBRAND [1966].

Da im Einproduktfall jeder ProduktionsprozeB eindeutig durch seine Produk­tionskoeffizienten gekennzeichnet ist, laBt sich die Technologiemenge einer li­nearen Technologie, die auf endlich vielen reinen Prozessen aufgebaut ist, mit Hilfe der Technologiematrix A* als Zusammenfassung aller Vektoren von effizi­enten Produktionsprozessen darstellen.

Page 84: Produktionstheorie ||

72 2. Enragsgesetzliche Produktionsfunktionen

a} ar af

A*= a~ ai ai

at n a 2

n a1 n

1 1 1

Dabei enthaIt jede Spalte die Produktionskoeffizienten eines Produktionsprozes­ses k, zeilenweise sind die Produktionskoeffizienten zu einem bestimmten Pro­duktionsfaktor i angeordnet. Die letzte Zeile ist dem Produkt zugeordnet; dabei erfolgt eine Normierung auf die Ausbringungsmenge 1 in jedem ProzeB. Durch Multiplikation der Technologiematrix mit dem k-ten Einheitsvektor lassen sich die Koeffizienten des Prozesses k isolieren.

Eine bestimmte (reine oder gemischte) AktiviUit y HiBt sich dadurch kennzeich­nen, in we1chem Umfang Zk die einzelnen Produktionsprozesse k = 1, ... ,[ an ihrer Realisierung beteiligt sind. Das Prozeftniveau Zk gibt an, wie oft das Pro­dukt im ProzeB k hergestellt wird. FaBt man die verschiedenen ProzeBniveaus Zk

zu einem ProzeBniveauvektor

zusammen, so lliBt sich die Technologiemenge wie folgt darstellen:

T:={~E9t~+t I r=A*.~; ~E9t~} Die bei einer bestimmten Produktionsaltemative r = (r; x) erzielte Ausbrin­gungsmenge und die benotigten Faktoreinsatzmengen lassen sich wie folgt dar­stellen:

I

x= L,Zk k=t

I

'i = L,af ·Zk k=t

Zk ~o

x=r-~

bzw.

Die Ausbringungsmenge x ergibt sich als Summe der ProzeBniveaus Zk, die Ein­satzmenge ri eines jeden Produktionsfaktors entspricht der Summe der mit den Produktionskoeffizienten des Faktors i gewichteten ProzeBniveaus. In der kom­pakteren Vektorschreibweise ist 1'= (1,1, ... ,1) ein Summationsvektor, der aus [ Einsen besteht.

Page 85: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 73

1m Mehrproduktfall sind neben den Produktionskoeffizienten at die Kopplungs­koeffizienten bj k zu beriicksichtigen, die das Verhiiltnis angeben, in dem die ver­schiedenen Produkte in bezug auf ein Referenzprodukt, des sen Ausbringungs­menge von Null verschieden sein muB, im ProzeB k entstehen. Das Referenzpro­dukt ist nicht notwendig in jedem ProzeB identisch, denn es moB in dem jeweili­gen ProzeB auch tatsachlich hergestellt werden. Die Technologiematrix besteht nun aus den beiden Teilmatrizen A und !1 mit:

a} ar af A=

aJ ai a~

al n a 2

n a l n

bl br bI

B= bi bi bi

bI m b2

m bl m

Die Technologiemenge ergibt sich dann als:

T:~ {.!' E 91,;,m r(~}l; ~E9I~} 1m n+m-dimensionalen Giiterraum hat die Technologiemenge die Form eines Kegels mit der Spitze im Koordinatenursprung, daher bezeichnet man lineare Technologien auch als Kegeltechnologien.

Satz: Die Technologiemenge einer linearen Technologie ist eine konvexe Menge.

Beweis: Gegeben seien yI, i E T. Wegen der Proportionalitats­eigenschaft gilt fur O:S; A :s; I :

A' yl E T

Wegen der Additivitatseigenschaft gilt weiter:

~ = A' i + (1- A)' ~2 E T

Page 86: Produktionstheorie ||

74 2. Ertragsgesetzliche Produktionsfunktionen

Da jede Konvexkombination von technisch moglichen Akti­vitaten wiederum zu einer zulassigen Aktivitat fiihrt, ist T tatsachlich eine konvexe Menge.

2.3.1.5 Exkurs: Grundbegriffe der parametrischen Iinearen Programmierung

1m folgenden werden einige Grundbegriffe der parametrischen linearen Pro­grammierung dargestellt, da dieses Analyseinstrument eine unabdingbare Vor­aussetzung fur das Verstandnis der nachstehenden Betrachtungen ist. Das Grundmodell der parametrischen linearen Programmierung bei Variation des Be­schriinkungsvektors lautet: (Vgl. hierzu z.B. DINKELBACH [1969], KISTNER

[1993b])

max (min) Z = f' :!

u.d.N.: AI·:! ~12.f +12.~ .7C

A2 .:! ~ 12.~ +12.~ . 7C

A3 .:! = 12.~ +12.~ .7C

:!~Q

Falls es in einem solchen parametrischen linearen Programm uberhaupt zulassige Losungen gibt, so existiert ein abgeschlossenes Intervall, innerhalb dessen der Parameter l( variiert und zu jedem Wert von l( eine zulassige Losung bestimmt werden kann. Der qualitative Verlauf der jeweils betrachteten Austauschbezie­hung laBt sich aus der Extremierungsrichtung der Zielfunktion und der Art der variierten Restriktion herleiten:

• Die parametrische Variation des Beschriinkungsvektors 12. fuhrt in einem Ma­ximierungsproblem zu einer konkaven Funktion des optimalen Zielfunktions­werts; bei einem Minimierungsproblem verlauft die Zielfunktion in Abhangig­keit von einem Parameter im Beschriinkungsvektor konvex. In jedem Fall er­haIt man eine stiickweise lineare Funktion mit einer endlichen Zahl von Knickpunkten.

• Die Richtung der Zielfunktion ergibt sich, indem man das Vorzeichen der Dualvariablen betrachtet, die der jeweils variierten Restriktion zugeordnet ist. Diese Dualvariable gibt an, wie der Zielfunktionswert auf eine Erhohung oder Reduktion des entsprechenden Beschriinkungskoeffizienten reagiert:

Page 87: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 75

- Die Dualvariable ist in einem Maximierungsproblem bei Variation einer ::;;-Restriktion positiv, denn eine Erhohung des Beschrankungskoeffizienten bedeutet eine Lockerung der Restriktion und fiihrt zu einem Anstieg des Zielfunktionswerts. Daher ist die Funktion des optimalen Zielfunktions­werts monoton steigend. Bei einer ~-Restriktion hingegen bedeutet eine Er­hohung des Beschrankungskoeffizienten eine Verscharfung, daher ist die Dualvariable negativ, und der Zielfunktionswert verHiuft monoton fallend.

- Dementsprechend erhaIt man in einem Minimierungsproblem bei Variation einer ::;;-Restriktion eine monoton fallende Funktion und zu einer ~­

Restriktion eine monoton steigende Funktion des Zielfunktionswerts.

- Bei Variation einer Restriktion in Gleichungsform erhaIt man eine unimo­dale Funktion des optimalen Zielfunktionswerts, die im Minimierungspro­blem konvex und im Maximierungsproblem konkav verlauft. Dies laBt sich wie folgt begriinden: Eine Gleichung laBt sich formal aufiosen in eine ::;;- und eine ~-Restriktion. Bei Variation des Beschrankungskoeffizienten erhaIt man jeweils einen Bereich, in dem die eine bzw. die andere Restrik­tion bindend ist; entsprechend wechselt das Vorzeichen der Dualvariablen. Allerdings kann einer der beiden Bereiche auch die leere Menge sein, so daB nur ein Ast der Zielfunktion relevant ist.

Die grundlegenden Verliiufe der Zielfunktion in Abhangigkeit von der Extremie­rungsrichtung und dem Typ der variierten Restriktion sind ffir Minimierungspro­bleme in Abbildung 32 und fUr Maximierungsprobleme in Abbildung 33 darge­stellt.

Die hier zu untersuchenden linearen Technologien sind zunachst in Form eines Systems linearer (Un-)G1eichungen gegeben. Bei der Analyse achsenparalleler Schnitte durch das Ertragsgebirge geht man nun wie folgt vor: Es wird betrachtet, wie sich die parametrische Variation des Beschrankungskoeffizienten einer be­stimmten Restriktion auf den moglichen Zielerreichungsgrad einer anderen Re­striktion auswirkt. Damit wird diese Restriktion zur Zielfunktion des parametri­schen linearen Programms. Da man davon ausgehen kann, daB eine durch eine ::;;­Restriktion beschriebene Giiterart moglichst sparsam eingesetzt werden solI, er­gibt sich in diesem Fall ein Minimierungsproblem. Entsprechend erhaIt man bei einer ~-Restriktion ein Maximierungsproblem, da man von der zugehorigen Gii­terart moglichst viel erhalten will.

Page 88: Produktionstheorie ||

76

ZF

ZF

ZF

2. Ertragsgesetzliche Produktionsfunktionen

Minimierungsproblem

s:. -Restriktion

Minimierungsproblem

~ -Restriktion

Minimierungsproblem

= -Restriktion

t

Abb.32: VerHiufe der Zielfunktion bei parametrischer linearer Programmierung

eines Minimierungsproblems

Page 89: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse

ZF

ZF

ZF

Maximierungsproblem

~ -Restriktion

Maximierungsproblem

~ -Restriktion

Maximierungsproblem

= -Restriktion

77

Abb.33: Verlaufe der Zielfunktion bei parametrischer linearer Programmierung eines Maximierungsproblems

Page 90: Produktionstheorie ||

78 2. Ertragsgesetzliche Produktionsfunktionen

2.3.2 Analyse der Produktionsfunktion

In diesem Abschnitt werden - analog zur Vorgehensweise in der neoklassischen Produktionstheorie - die Eigenschaften der Produktionsfunktion untersucht, die sich fiir eine lineare Technologie mit mehreren effizienten Produktionsprozessen ergibt. Zunachst wird in Abschnitt 2.3.2.1 die Produktionsfunktion bei totaler Faktorvariation betrachtet.

Die Analyse der anderen Aspekte der Produktionsfunktion erfolgt, indem ach­senparallele Schnitte durch das von der Technologiemenge aufgespannte Er­tragsgebirge gezogen und ihre Verlaufe interpretiert werden. Dabei nimmt die Komplexitat der Untersuchungen immer weiter zu: In Abschnitt 2.3.2.2 wird zu­nachst der Einproduktfall behandelt, in Abschnitt 2.3.2.3 werden die Betrachtun­gen auf den Mehrproduktfall ausgeweitet, und in Abschnitt 2.3.2.4 werden die bisherigen Erkenntnisse auf die Beriicksichtigung von Umweltgiitem sowohl als Einsatzstoffe wie auch als Ergebnis der Produktion iibertragen.

2.3.2.1 Totale Faktorvariation

Bei der totalen Faktorvariation wird untersucht, wie die Ausbringungsmenge auf eine proportionale Variation samtlicher Faktoreinsatzmengen reagiert (vgl. auch Abschnitt 2.2.1.1). Totale Faktorvariation bedeutet in einer linearen Technologie, daB diejenigen Produktionsaltemativen betrachtet werden, die auf dem zu einer gegebenen Ausgangsaktivitat gehorenden ProduktionsprozeB liegen.

Die Produktionsfunktion bei totaler Faktorvariation entspricht somit einem Pro­zejJstrahl, wie er fUr den Einproduktfall bereits in Abbildung 27 dargestellt wur­de. Da die Aktivitaten auf einem ProduktionsprozeB durch proportionale Varia­tion der Ausgangsaktivitat erreicht werden, steigen oder fallen die Ausbrin­gungsmengen im gleichen VerhaItnis wie die Faktoreinsatzmengen:

~ = (D:!) E T

=> A . ~ = (A· r; A . :!) ETA ~ 0

Wenn die Ausgangsaktivitat das Effizienzkriterium erfiillt, so sind auch alle Ak­tivitaten auf dem zugehorigen ProzeBstrahl effizient. 1m EinproduktfalllaBt sich die Produktionsfunktion in expliziter Form angeben. FUr die Produktionsfunktion bei totaler Faktorvariation gilt:

X(A} = cp(A·rl,A·r2, ... ,krn } = A·cph,r2, ... ,rn } = A·X

Page 91: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 79

Diese Funktion ist offensichtlich linear-homogen, d.h. sie weist konstante Ska­lenertrage auf (vgl. hierzu nochmals die Ausfiihrungen in Abschnitt 2.2.1.1).

2.3.2.2 Einproduktfall

1m folgenden werden - zunachst wiederum fUr den Einproduktfall - produktions­theoretische Aussagen aus der Analyse einer linearen Technologie abgeleitet. Dabei werden die verschiedenen Betrachtungsebenen anhand von entsprechenden Schnitten durch das Ertragsgebirge untersucht. 1m Einproduktfall verftigt der Be­trieb tiber mehrere Produktionsprozesse zur Herstellung eines Produkts. Die Pro­duktionsprozesse werden durch ihre Produktionskoeffizienten eindeutig be­schrieben. Diese geben an, welche Mengen der verschiedenen Einsatzfaktoren je Einheit des Produkts benotigt werden.

Wiihrend bislang die Technologiemenge ohne Berticksichtigung von Restriktio­nen auf der Input- oder Outputseite betrachtet wurde, wird nun von dem in der Realitiit vorherrschenden Fall ausgegangen, daB die Produktionsfaktoren wiihrend des betrachteten kurzfristigen Zeitabschnitts nur in bestimmten Mengen 'to zur Verftigung stehen (Bestandskonstanz). Dies ist insbesondere dann der Fall, wenn Kapazitiitsgrenzen bei den Betriebsmitteln zu berticksichtigen sind oder wenn Verbrauchsfaktoren nur begrenzt beschafft werden konnen. Weiter wird ange­nommen, daB yom hergestellten Produkt eine vorgegebene Mindestmenge XO

produziert werden moB. Die fUr wirtschaftliche Betrachtungen relevante Tech­nologiemenge reduziert sich damit auf diejenigen Produktionsalternativen, die im Rahmen der gegebenen Restriktionen durchgeftihrt werden konnen:

j A . z = r '5, ro) T:= 2: = (DX) E 9t!+1 r·~ = x ~ xO

~~Q

Die Restriktionen der Technologiemenge lauten in ausftihrlicher Schreibweise:

1 2 / 0 al . Zl + al . Z2 + ... + al . Z/ '5, rl

1 2 / 0 a2 . Zl + a2 . Z2 + ... + a2 . Z/ '5, r2

Zl + Z2 + ... +

Page 92: Produktionstheorie ||

80 2. Ertragsgesetzliche Produktionsfunktionen

Wie in Abschnitt 1.1.2 dargestellt, gibt die Produktionsfunktion eine eindeutige Beziehung zwischen Faktoreinsatzmengen und der damit maximal erzielbaren Ausbringungsmenge an. FUr den Fall einer linearen Technologie, die iiber mehre­re effiziente Produktionsprozesse zur Herstellung des Produkts verfiigt, liiBt sich die Produktionsfunktion mit Hilfe der linearen und der parametrischen linearen Programmierung herleiten.

So la8t sich die maximale Ausbringungsmenge x, die mit gegebenen BesUinden von Einsatzfaktoren r.0 erzeugt werden kann, als Losung des folgenden linearen Programms bestimmen:

I

max x= LZk k=l

I u.d.N.: Laf· zk ::;; Tjo

k=l

i= 1, ... ,n

k = 1, ... ,1

In der optimalen LOsung dieses Programms werden in der Regel nicht samtliche Faktorbestande vollstandig eingesetzt. Vielmehr werden bei einigen Einsatzfakto­ren iiberschiissige Mengen vorliegen, die - soweit sie sich nicht anderweitig nut­zen oder in eine folgende Periode iibertragen lassen - verschwendet werden. Auf­grund der Limitationalitiit der Produktionsfaktoren auf jedem einzelnen Produk­tionsprozeB wird die mogliche Ausbringungsmenge durch den Einsatzfaktor be­grenzt, der relativ am knappsten ist.

1m Einproduktfall sind folgende Untersuchungsmoglichkeiten von Interesse:

• Produktionsfunktion bei partieller Faktorvariation

• Faktoreinsatzfunktion

• Isoquante

2.3.2.2.1 Produktionsfunktion bei partieller Faktorvariation

Bei der partiellen Faktorvariation wird untersucht, wie die Ausbringungsmenge auf die isolierte Variation der Einsatzmenge eines einzelnen Produktionsfaktors reagiert (vgL Abschnitt 2.2.1.2). Zwar fiihrt der Mehreinsatz eines Produktions­faktors wegen der Limitationalitat zu keiner Erhohung der Ausbringungsmenge, solange nur ein einziger ProduktionsprozeB betrachtet wird, jedoch stehen in der Regel mehrere Produktionsprozesse mit unterschiedlichen Faktoreinsatzmengen-

Page 93: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 81

verhaltnissen zur Verfiigung. Wie in Abschnitt 2.3.1.2 gezeigt wurde, besteht in diesem Fall die Moglichkeit, durch eine Variation der Gewichte, mit denen die einzelnen Produktionsprozesse genutzt werden, Prozej3kombinationen zu bilden und auf diese Weise Faktoreinsatzmengen gegeneinander zu substituieren.

In Abbildung 34 ist ffir ein numerisches Beispiel dargestellt, wie sich die Pro­duktionsfunktion bei partieller Faktorvariation herleiten laBt, wenn der Produk­tionsfaktor 1 variabel ist und der Produktionsfaktor 2 auf dem Niveau r2 = 7'"2

konstant gehalten wird.

o ~~ ____ ~--------~------------------~----~

x

4

3

2

o L-______ ~--------~------------------~----_. f14

Abb. 34: Partielle Faktorvariation

Page 94: Produktionstheorie ||

82 2. Ertragsgesetzliche Produktionsfunktionen

1m ersten Teilintervall [0, rl] ist die Beschrankung des konstanten Produktions­faktors noch nicht bindend, sein Bestand wird zum Teil verschwendet. Die Aus­dehnung der Produktion erfolgt daher entlang des ProzeBstrahls nl, der beziig­lich des variablen Faktors den geringsten Produktionskoeffizienten aufweist, urn diesen moglichst sparsam einzusetzen. Die Ausbringungsmenge steigt in diesem Intervall von 0 auf I an. Am Ende des Intervalls ist der Bestand des konstanten Faktors ausgeschopft, eine weitere Ausdehnung der Produktion mit dem Produk­tionsprozeB nl ist nicht mehr moglich.

Die Ausbringungsmenge laBt sich jedoch noch erhOhen, indem im Intervall [rl,r12] sukzessiv yom ProduktionsprozeB nl auf den ProzeB n2 iibergegangen wird, der beziiglich des variablen Faktors einen hOheren und beziiglich des kon­stanten Faktors einen geringeren Produktionskoeffizienten aufweist als nl. Dabei werden ProzeBkombinationen gebildet, in denen der konstante Faktor jeweils vollstiindig eingesetzt wird. Am Ende dieses Intervalls wird mit dem reinen Pro­zeB n2 produziert und die Ausbringungsmenge 2 erreicht.

Auf iUmliche Weise laBt sich im dritten und vierten Teilintervall die Ausbrin­gungsmenge sukzessiv auf 3 und schlieBlich auf 4 erhOhen, indem zunachst Pro­zeB n2 mit n3 und schlieBlich n3 mit n4 konvex kombiniert wird. Eine groBere Ausbringungsmenge als 4 liiBt sich nicht realisieren, da kein weiterer ProzeB zur Verfiigung steht. Ein iiber yt4 hinausgehender Einsatz des variablen Faktors wiir­de demnach dessen Verschwendung bedeuten.

1m unteren Teil der Abbildung 34 wird gezeigt, wie sich die Ausbringungsmenge in Abhangigkeit von der Einsatzmenge des variablen Faktors entwickelt. Offen­sichtlich ist das in Abschnitt 2.2.1.2 eingefiihrte neoklassische Ertragsgesetz in seiner abgeschwachten Form erfiillt. Es liegen positive, nicht-zunehmende Er­tragszuwachse vor; die Produktionsfunktion bei partieller Faktorvariation verlauft stiickweise linear und konkav.

FormalliiBt sich diese Produktionsfunktion aus der Technologiemenge herleiten, indem das folgende parametrische lineare Programm zur Maximierung der Aus­bringungsmenge fiir Parameterwerte 0 ~ 1( ~oc gelost wird:

I

max x= LZk k=l

I u.d.N.: Laf . Zk ~ lio

k=l

i = 2, ... ,n

Page 95: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 83

I 'Laf ·Zk ~ K:. rIO k=l

Zk ~O k = 1, ... ,1

Ohne Beschriinkung der Allgemeinheit wird angenommen, daB der erste Produk­tionsfaktor variabel ist und die anderen n -1 Faktoren in festen Mengen vorlie­gen.

Bei der partiellen Faktorvariation handelt es sich urn die Variation einer ~­Restriktion in einem Maximierungsproblem. Daher muB die Funktion des opti­malen Zielfunktionswerts in Abhangigkeit yom Parameter 1( konkav und monoton steigend verlaufen, d.h. sie entspricht qualitativ der im unteren Teil von Abbil­dung 34 dargestellten Produktionsfunktion mit ihrem ertragsgesetzlichen Verlauf. Die dem variablen Faktor zugeordnete Dualvariable gibt an, wie der Zielfunkti­onswert innerhalb eines Parameterintervalls auf eine (marginale) Anderung der Einsatzmenge dieses Faktors reagiert; sie HiBt sich daher als Grenzproduktivitiit des variablen Produktionsfaktors interpretieren.

In den kritischen Punkten des parametrischen linearen Programms, die den Knickpunkten der Produktionsfunktion bei partieller Faktorvariation entsprechen, findet jeweils ein Prozej3wechsel statt. Dabei fallt die GrenzproduktiviUit sprung­haft ab, denn bei vollsUindiger Ausnutzung des konstanten Produktionsfaktors ist nur dann eine weitere ErhOhung der Ausbringungsmenge moglich, wenn - wie oben beschrieben - sukzessiv zu Prozessen ubergegangen wird, die immer kleine­re Produktionskoeffizienten bezuglich des konstanten und immer groBere bezug­lich des variablen Faktors aufweisen.

Zu ahnlichen Ergebnissen gelangt man, wenn man sich nicht auf die Variation eines einzigen Produktionsfaktors beschrankt, sondem die Einsatzmengen mehre­rer Faktoren in "Faktorpaketen" (vgl. EICHHORN [1970]) systematisch variiert. Dieser Fall tritt z.B. auf, wenn mehrere Werkstoffe zwecks Ausnutzung giinstiger Lieferkonditionen in konstanten Mengenverhiiltnissen bestellt werden oder wenn die Kapazitiit aller Betriebsmittel durch Verkiirzung oder Verlangerung der Ar­beitszeit in gleichem MaBe vermindert oder erhOht wird. Sofem mindestens ein Beschrankungskoeffizient konstant gehalten wird und es keinen Produktionspro­zeB gibt, in dem der entsprechende Einsatzfaktor nicht benotigt wird, wird sich die zugehorige Restriktion ab einer bestimmten Ausbringungsmenge als EngpaB erweisen und damit eine weitere Ausdehnung der Produktion verhindem. Die Produktionsfunktion bei partieller Faktorvariation weist wiederum einen stiick­weise linearen, ertragsgesetzlichen Verlauf auf.

Page 96: Produktionstheorie ||

84 2. Ertragsgesetzliche Produktionsjunktionen

Wahrend die Variation eines einzelnen Beschrankungskoeffizienten einem ach­senparallelen Schnitt durch den Giiterraum entspricht, findet bei gemeinsamer Variation mehrerer Restriktionen ein nicht-achsenparalleler Schnitt statt.

2.3.2.2.2 Faktoreinsatzfunktion

Zur Herleitung der Faktoreinsatzlunktion ist die Einsatzmenge des variablen Pro­duktionsfaktors bei Konstanz aller anderen Produktionsfaktoren und bei parame­trischer Variation der geforderten Mindestausbringungsmenge zu minimieren. Dies fiihrt, wenn wiederum Produktionsfaktor 1 als variabel angesehen wird, auf das folgende parametrische lineare Programm:

1

min rl = Laf ·Zk k=l

1 u.d.N.: LZk ~1(·XO

k=l

1 Laf ·Zk ~'i0 k=l

Zk ~O

i=2, ... ,n

k = 1, ... ,[

Da hier die Variation einer ~-Restriktion in einem Minimierungsproblem unter­sucht wird, muB die Faktoreinsatzfunktion konvex und stiickweise linear steigend verlaufen. Der idealtypische Verlauf einer so1chen Faktoreinsatzlunktion ist in Abbildung 35 dargestellt.

x

Abb. 35: Faktoreinsatzfunktion

Page 97: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 85

Es handelt sich dabei um die Umkehrfunktion der zuvor hergeleiteten Produk­tionsfunktion bei partieller Faktorvariation. Die der parametrisch variierten Re­striktion zugeordnete Dualvariable gibt die zusatzliche Menge des Einsatzfaktors 1 an, die erforderlich ist, um die Ausbringungsmenge um eine (marginale) Ein­heit zu erhohen. Dieser ProduktionskoejJizient steigt bei jedem ProzeBwechsel sprunghaft an, da jeweils ein Ubergang zu einem ProduktionsprozeB stattfindet, der yom variablen Produktionsfaktor je Produkteinheit mehr benotigt.

Diese Dualvariable kann daher als ProduktionskoejJizient interpretiert werden, der in den Knickpunkten der Funktion jeweils sprunghaft ansteigt, da mit zuneh­mender Ausschopfung der Bestiinde der konstant gehaltenen Produktionsfaktoren zu immer weniger produktiven Produktionsprozessen beziiglich des variablen Faktors 1 iibergegangen werden muS, um eine weitere Steigerung der Ausbrin­gungsmenge zu erreichen. Von einem bestimmten Punkt an wiirde die Funktion parallel zur rl-Achse verlaufen. Hier ist die Kapazitatsgrenze erreicht, die Be­stiinde siimtlicher konstanter Produktionsfaktoren werden voll ausgeschopft. Bei einer weiteren ErhOhung der Einsatzmenge des Faktors 1 wiirde dieser lediglich verschwendet, ohne die Ausbringungsmenge weiter zu steigem.

Auch die Faktoreinsatzfunktion in einer linearen Technologie weist somit niihe­rungsweise einen neoklassischen Verlauf auf.

2.3.2.2.3 Isoquante

Die Isoquante wurde in Abschnitt 2.2.1.3 als Menge der effizienten Kombinatio­nen von Faktoreinsatzmengen zur Erzeugung einer bestimmten Ausbringungs­menge definiert. In einer linearen Technologie mit endlich vielen Produktions­prozessen erhiilt man die Isoquante als Menge der Konvexkombinationen siimtli­cher benachbarter effizienter Prozesse. Ihr Verlauf wurde fiir den Fall zweier va­riabler Produktionsfaktoren bereits im oberen Teil von Abbildung 34 dargestellt. Da fiir jede zulassige Ausbringungsmenge eine so1che Isoquante existiert, ist das Substitutionsgebiet mit einer Schar paralleler Polygonziige angefiillt, die fiir ganzzahlige Vielfache einer bestimmten Ausbringungsmenge aquidistant verlau­fen.

Analytisch liiBt sich die Isoquante in einer linearen Technologie wiederum mit Hilfe der parametrischen linearen Programmierung herleiten, indem ein Schnitt durch den Giiterraum parallel zu der Ebene der Achsen der beiden Produktions­faktoren, deren Austauschverhiiltnis untersucht werden soIl, gelegt wird. Ohne Beschriinkung der Allgemeinheit soIl untersucht werden, wie die mindestens er-

Page 98: Produktionstheorie ||

86 2. Ertragsgesetzliche Produktionsfunktionen

forderliche Einsatzmenge des Produktionsfaktors 2 auf eine parametrische Varia­tion der verfiigbaren Menge des Faktors 1 reagiert. Dazu ist das folgende para­metrische lineare Programm zu losen:

I

min r2 = La~ 'zk k=l

I u.d. N.: Laf· zk ~ 1(. rt

k=l

I

Laf 'zk ~'i0 k=l

I LZk ~xo k=l

i=3, ... ,n

k =1, ... ,1

Ffir jeden Parameterwert 1( liefert dieses Programm einen Punkt der Isoquante. Insgesamt erhalt man bei Variation von 1( innerhalb des zulassigen Intervalls die folgende Funktion:

r2 = f(rlhO, ... ,rnO,xO)

Da es sich um die Variation einer ~-Restriktion in einem Minimierungsproblem handelt, verlauft die sruckweise lineare Funktion des optimalen Zielfunktions­werts konvex und monoton fallend. Auf den Geradensrucken wird mit einer be­stimmten ProzeBkombination produziert; in den Knickpunkten erfolgt jeweils ein ProzeBwechsel, bier wird mit einem reinen ProzeB produziert.

Die der variierten Restriktion zugeordnete Dualvariable gibt an, wie die zur Her­stellung von x 0 mindestens erforderliche Einsatzmenge des Produktionsfaktors 2 auf eine (marginale) Anderung der Einsatzmenge des Faktors 1 reagiert. Sie laBt sich daher als Grenzrate der Substitution interpretieren. Sie ist nicht-negativ und fallt in den kritischen Punkten, die ProzeBwechseln entsprechen, sprunghaft abo Auch auf dieser Betrachtungsebene gelten offensichtlich ffir eine lineare Tech­nologie mit endlich vielen effizienten Prozessen die neoklassischen Eigenschaf­ten.

Allerdings wird - wie bereits in Abschnitt 2.3.1.2 ausgefiihrt - ein anderer Sub­stitutionsbegriff verwendet. Wiihrend in der neoklassischen Produktionstheorie von der direkten Substituierbarkeit der Einsatzfaktoren ausgegangen wird, laBt

Page 99: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 87

sich die Faktorsubstitution in der linearen Aktivitiitsanalyse tiber den Umweg der Prozeftsubstitution erklaren. Da auf jedem einzelnen ProduktionsprozeB limita­tionale FaktoreinsatzmengenverhaItnisse gelten, ist ein Austausch von Produk­tionsfaktoren nur in dem MaGe moglich, wie noch weitere effiziente Prozesse mit hoheren bzw. niedrigeren Produktionskoeffizienten zur Verfiigung stehen.

2.3.2.3 Mehrproduktfall

In dem bereits in Abschnitt 1.2.1 grundsatzlich dargestellten Mehrproduktfall

kann der Betrieb mit seiner gegebenen Technologie mehr als ein Produkt erzeu­

gen. Dabei kann es sich urn unverbundene Produktion oder urn Kuppelproduktion

handeln, Kuppelproduktion liegt vor, falls mehrere Produkte gleichzeitig in einem

ProduktionsprozeB entstehen (vgl. insbesondere RIEBEL [1955]). Man unterschei­

det dabei anhand der Kopplungskoeffizienten bj in starre und elastische Kuppel­

produktion bzw. in Kuppelproduktion mit fester und loser Kopplung:

• Kuppelproduktion mitfester Kopplung bedeutet, daB das MengenverhaItnis, in dem die Produkte entstehen, konstant ist. Dies ist der Fall, wenn es nur einen einzigen ProzeB zur Erzeugung der betreffenden Produkte gibt, oder wenn auf allen geeigneten Prozessen identische MengenverhaItnisse gelten.

• Bei Kuppelproduktion mit loser Kopplung konnen die Produkte in unter­schiedlichen Verhaltnissen entstehen. Dies ist der Fall, wenn die betreffenden Produkte auf mehreren Prozessen mit unterschiedlichen Kopplungskoeffizi­enten erzeugt werden. Urn das VerhaItnis der Ausbringungsmengen zu variie­ren, sind ProzeBkombinationen dieser Prozesse zu bilden.

1m Gegensatz zum Einproduktfall weist die Technologiemenge im Mehrprodukt­fall nicht nur eine, sondern mehrere Produktrestriktionen auf; die Faktorrestrik­tionen gelten unverandert. Die Technologiemenge lautet nunmehr:

Die Produktionsmoglichkeiten werden in ausftihrlicher Schreibweise durch das folgende System von linearen Ungleichungen beschrieben:

Page 100: Produktionstheorie ||

88 2. Ertragsgesetzliche Produktionsfunktionen

1 2 I 0 al . Zl + al . Z2 + ... + al . Zl ~ rl

1 2 I 0 a2 'Zl +a2 'Z2 + ... +a2 'Zl ~ r2

bl· Zl + bf. Z2 + ... + bf . Zl ~ xp bi . Zl + bi . Z2 + ... + bi . Zl ~ x~

Die bereits im Einproduktfall durchgefUhrten Untersuchungen lassen sich direkt auf diese Technologie tibertragen: FUr die Untersuchung der Isoquante fuldert sich durch die Aufnahme zusatzlicher Produktrestriktionen qualitativ nichts; zur Herleitung der Produktionsfunktion bei partieller Faktorvariation und der Fak­toreinsatzfunktion ist anstelle des einzigen Produkts die Produktionsmenge eines beliebigen Produkts zu berticksichtigen.

Ais zusatzliche Untersuchungsmoglichkeit tritt im Mehrproduktfall die Pro­duktsubstitution auf. Dabei ist zu analysieren, wie bei Konstanz aller anderen Re­striktionen die maximal herstellbare Ausbringungsmenge eines bestimmten Pro­dukts auf unterschiedliche Vorgaben fUr die Mindestausbringungsmenge eines anderen Produkts reagiert. Ohne Beschrankung der Allgemeinheit wird im fol­genden parametrischen linearen Programm die Ausbringungsmenge des Produkts 1 parametrisch variiert und die Maximierung der Ausbringungsmenge des Pro­dukts 2 als Zielfunktion gesetzt.

I

max x2 = Lbf 'Zk k=l

I u.d.N.: Lbf 'zk ~ 1('XlO

k=l

I

LbJ 'Zk ~xJ j=3, ... ,m k=l

I

Lat-zk ~'i0 i = 1, ... ,n k=l

Page 101: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 89

k = 1, ... ,1

Die aus dieser Analyse resultierende Funktion wird als Transformationskurve bezeichnet. Sie ist nach den allgemeinen Ergebnissen der Theorie der parametri­schen linearen Programmierung konkav und stiickweise linear fallend, denn es wird eine ~-Restriktion in einem Maximierungsproblem variiert. Thr qualitativer Verlauf ist in Abbildung 36 dargestellt. Die Schnittpunkte der Funktion mit den Achsen geben an, wieviel von Produkt 1 bzw. 2 mit den gegebenen Faktorbe­standen und bei gegebenen Ausbringungsmengen der sonstigen Produkte maxi­mal hergestellt werden kann, wenn auf die Ausbringung des jeweils anderen Pro­dukts vollstandig verzichtet wird.

Abb. 36: Produktsubstitution

Die der variierten Restriktion zugeordnete Dualvariable gibt an, urn wieviel die Ausbringungsmenge des Produkts 1 reduziert werden muB, urn die Ausbringung des Produkts 2 urn eine (marginale) Einheit zu erhohen. Sie laBt sich als Grenz­rate der Produktsubstitution zwischen den Produkten 1 und 2 interpretieren. Zwi­schen zwei Knickpunkten der Transformationskurve ist ihr Wert konstant, in je­dem Knickpunkt nimmt die Menge des Produkts 1 zu, auf die man zugunsten ei­ner zusatzlichen Einheit von Produkt 2 verzichten muB. Dieser Zusammenhang laBt sich wiederum damit begriinden, daB mit zunehmender Produktion von Pro­dukt 2 die Bestande der konstanten Einsatzfaktoren zunehmend ausgeschopft werden und somit bei den ProzeBwechseln auf immer weniger produktive Prozes­se fUr dieses Produkt iibergegangen werden muB.

Page 102: Produktionstheorie ||

90 2. Ertragsgesetzliche Produktionsfunktionen

2.3.2.4 Beriicksichtigung von Umweltgiitern

2.3.2.4.1 Problemstellung

In der bisherigen Betrachtung wurden lediglich die Austauschbeziehungen zwi­schen so1chen Einsatzfaktoren und Produkten untersucht, die gegen Entgelt von den Beschaffungsmiirkten bezogen bzw. auf den Absatzmiirkten verauBert wer­den konnen. Dabei wird nach dem okonomischen Prinzip die Minimierung von Inputmengen bzw. die Maximierung von Outputmengen jeweils bei Konstanz aller anderen GUtermengen angestrebt. Diese herkommliche Sichtweise des Pro­duktionsprozesses als mengenmiiBige Transformation von knappen Produktions­faktoren in erwUnschte Produkte ist in Abbildung 37a nochmals dargestellt.

INPUT OUTPUT

Beschaffung am Faktormarkt Verwertung am Absatzmarkt ------~~~~~-------~~ Produktion

- Werkstoffe ..

- Materielle Giiter - Betriebsmittel - Arbeit

- Dienstleistungen

Minimierung Maximierung

Abb. 37a: Herkommliche Darstellung des Produktionsprozesses

In dieser Darstellung sind Umweltgiiter nicht enthalten. Wenn nun auch die Wechselwirkungen der Produktion mit der narurlichen Umwelt erfaBt werden sollen, ist die klassische mengenmiiBige Transformationsbeziehung urn folgende Aspekte zu erweitem:

(l) Auf der Outputseite sind zusatzlich die Emission von Schadstoffen und die Abgabe von Abfiillen an die Umwelt zu beriicksichtigen.

• Zum einen handelt es sich dabei urn Stoffe und Energien, deren Emission nicht bemerkt oder (derzeit) nicht sanktioniert wird, z.B. Abwiirme, CO2,

Ozon. Dies ist der klassische Fall des "free disposal"; der Betrieb kann sich seiner unerwiinschten Kuppelprodukte entledigen, ohne daB fUr ihn direkte Kosten entstehen. Die oft erst spater bemerkbaren extemen Kosten so1cher Emissionen werden von der Allgemeinheit getragen. FUr den ge­winnmaximierenden Betrieb besteht kein Anreiz, die Entstehung dieser Produktarten zu reduzieren.

Page 103: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 91

• Zum anderen entstehen bei der Produktion Stoffe und Energien, deren be­liebige Einbringung in die Umwelt unerwiinscht bzw. verboten ist, z.B. Abfall, Abwasser. Es erfolgt bereits eine Sanktionierung mittels der ver­schiedenen Instrumente staatlicher Umweltpolitik, insbesondere

- Erhebung von Gebiihren, - Festsetzung von Emissionsobergrenzen, - Androhung von Bestrafung.

Da es fUr diese Giiter keine Moglichkeit eines "free disposal" gibt, besteht ein Anreiz, ihre Entstehung soweit wie moglich zu verringem.

Ffir beide Arten von Emissionen gilt, daB sie bei gegebener Technologie zwangsweise als Kuppelprodukte in festen oder variablen Mengenverhaltnis­sen neben den erwiinschten Produkten entstehen, jedoch in der herkommli­chen Darstellung der Produktion nicht (hinreichend) erfaBt werden. Die Ent­stehung solcher Giiter kann eine unvollstandige Umsetzung der Ausgangs­stoffe in Endprodukte bedeuten. Daraus ergibt sich ein zusatzlicher Anreiz, ihren Anfall soweit technisch moglich zu reduzieren.

(2) Auch auf der Inputseite des Produktionsprozesses ist eine Erganzung der herkommlichen Darstellung notwendig; neben den klassischen Produktions­faktoren konnen folgende Giiter zum Einsatz gelangen:

• RegelmaBig werden Umweltgiiter als sogenannte ,/reie Gater" verwendet, ffir deren Nutzung kein Entgelt zu zahlen ist. Hierzu zahlen z.B. der Luft­sauerstoff, der in Oxidationsprozesse eingeht oder auch die Nutzung von Luft und Wasser zu Kiihlzwecken in Produktionsprozessen. Ahnlich wie bei den nicht sanktionierten Emissionen besteht auch hier das Problem, daB durch die einzelwirtschaftliche Nutzung natiirlicher Ressourcen verur­sachte Umweltschaden von der Allgemeinheit als exteme Kosten getragen werden miissen. Eine staatliche Regulierung derartiger Entnahmeaktivita­ten, die zur Intemalisierung der Kosten fiihren wfude, erfolgt erst in An­satzen, z.B. im Rahmen der Genehmigung von Anlagen an bestimmten Standorten.

• Ein anders gearteter Faliliegt vor, wenn zu den Einsatzstoffen der Pro­duktion Abfalle oder Schadstoffe zahlen, deren Beseitigung erwiinscht ist. Dies ist insbesondere beim Recycling, bei Entsorgungsprozessen sowie bei der Sanierung von Umweltschaden der Fall. Ein Beispiel ist eine Miillver­brennungsanlage, die durch thennische Verwertung aus Abfallen Energie

Page 104: Produktionstheorie ||

92 2. Ertragsgesetzliche Produktionsfunktionen

in Form von Elektrizitiit und Warme erzeugt; doch auch die Riickfillmmg von Abwarme, die Aufbereitung von Reststoffen und andere Formen des Recycling sind hier zu nennen. Ein solcher Einsatz von Abfallen und Schadstoffen in der Produktion kann aus vielfachen Grunden erfolgen:

Einsparung von extemen Entsorgungskosten Substitution anderer, entgeltlich erworbener Faktorarten Befolgung von gesetzlichen Abfallverwertungsgeboten Erzielung von ErlOsen in der Umweltschutzindustrie

1m Gegensatz zu den herkommlichen Einsatzfaktoren, die entgeltlich auf Faktormarkten erworben werden, so daB man ihren Einsatz zu minimieren versucht, fiihrt die produktive Verwendung von AbfaIlen und Schadstoffen entweder zu direkten Erlosen oder zu Opportunitatserlosen in Form von Kostenreduktionen, so daB ein wirtschaftlicher Anreiz besteht, diese Stoffe in moglichst groBen Mengen einzusetzen.

Erganzt man die herkommliche Darstellung des Produktionsprozesses urn diese vier Giiterarten, so gelangt man zur erweiterten Darstellung in Abbildung 37b. Diese Darstellung orientiert sich an der Stellung der Gater im Produktionsprozefl, d.h. auf der Inputseite werden die Giiterarten beriicksichtigt, die in die Produktion eingehen, auf der Outputseite so1che, die aus der Produktion resultieren.

INPUT

Beschaffung am Faktormarkt

-Freie Entnahme aus der Natur .. .. Produktion Einsatz von AbfaIlen ..

Abb. 37b: ProduktionsprozeB mit Umweltgiitem

OUTPUT

Verwertung am Absatzmarkt

Freie Abgabe an die Natur

Geregelte Entsorgung

.. -.. ..

Problematisch ist bei dieser Einteilung jedoch zum einen die explizite Erfassung aller relevanten Umweltnutzungen - haufig wird eine Gefiihrdung erst im nach­hinein erkannt, wie das Beispiel der Altlasten zeigt - zum anderen ihre Zuord­nung zu den Giiterarten, die sich zusatzlich im Zeitablauf verschieben kann. Eine solche Verschiebung findet z.B. statt, wenn durch umweltpolitische MaBnahmen bislang freie Umweltnutzungen mit Kosten belastet werden, oder wenn sich fiir einen bislang als Abfall angesehenen Stoff eine Einsatzmoglichkeit ergibt.

Page 105: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 93

2.3.2.4.2 Lineare Technologie mit Umweltgiitern

Zur expliziten BerUcksichtigung von Umweltgiitem in der linearen AktiviHits­analyse ist eine Erweiterung des bisher verwendeten Begriffs einer Aktivitat bzw. Produktionsaltemative erforderlich: Bezeichnet man die bei der Produktion ent­stehenden unerwiinschten Emissionen, Schadstoffe und Abfli1le (im folgenden wird einheitlich der Begriff "Schadstoffe" verwendet) mit dem Vektor

X = (X1,X2 , ... ,XM ) E 9t!'" und die in der Produktion eingesetzten Abfli1le oder Schadstoffe mit

E. = (Rl ,R2 ,· .. ,RN ) E 9tf ' so gibt eine Aktivitat 1. E T nunmehr eine zulassige Kombination von Faktorein­

satzmengen, marktfahigen Produkten, emittierten Schadstoffen und eingesetzten

Schadstoffen an:

X. = (r;:!;X;R) E 9t~+m+M+N

1m folgenden wird gezeigt, daB sich die bisher betrachteten Eigenschaften und Beziehungen auf eine urn Umweltgiiter erweiterte lineare Technologie iibertragen lassen.

So lautet das EJfizienzkriterium nunmehr:

Eine Produktionsaltemative x.0 = (rO;:!O; XO;E.0) ist effizient, wenn es keine andere Produktionsaltemative X. = (r;:!; X; R) gibt, so daB gilt:

1i ~ r.o i = l, ... ,n I

und Xj ~ x~ J j = l, ... ,m

und ° Xl S; Xl J=I, ... ,M

und R] >Ro - ] 1= 1, ... ,N

und r: I < r.o I

fUr mindestens ein i

oder Xj > x~ J

fUr mindestens einj

oder Xl <x9 fUr mindestens ein J

oder R] >Rf fUr mindestens ein I

Page 106: Produktionstheorie ||

94 2. Ertragsgesetzliche Produktionsfunktionen

Das bedeutet, daB eine Produktionsaltemative ineffizient ist, wenn sich eine an­dere finden laBt, die weniger Produktionsfaktoren benotigt, mehr Produkte liefert, weniger Schadstoffe erzeugt oder mehr Schadstoffe einsetzt, ohne dabei in ir­gendeinem anderen Kriterium schlechter zu sein. Da auch fUr die urn Umweltgii­ter erweiterten Aktivitaten die in Abschnitt 2.3.1 eingefiihrten Eigenschaften der Proportionalitat und Additivitat gelten, lassen sich die Aussagen tiber die Effizi­enz von ProzeBkombinationen entsprechend tibertragen.

Ahnlich wie die traditionell betrachteten Gtiter konnen auch Umweltgiiter Re­striktionen in Form von maximalen Emissionsmengen bzw. Mindesteinsatzmen­gen unterliegen. Je weiter die Umweltschutzgesetzgebung verscharft wird, desto mehr Gtiter unterliegen derartigen Restriktionen, die zudem tendenziell immer strenger gefaBt werden. Die zuvor eingeftihrte lineare Technologie ist daher wie folgt zu erweitem:

• Die Mengen der bei der Produktion emittierten Schadstoffe konnen durch Ge­setze, Verordnungen oder behordliche Genehmigungen nach oben begrenzt sein. FUr jeden Schadstoff mit einer derartigen Beschrankung ist eine Restrik­tion des folgenden Typs einzufiihren:

I

LC~ 'zk ~ X~ J=I, ... ,M k=l

Liegt fUr einen Schadstoff keine Emissionsbeschrankung vor, so betragt die entsprechende Obergrenze X J = oc. Der Emissionskoeffizient c} gibt an, wieviele Einheiten von Schadstoff J im ProduktionsprozeB k je Einheit des Re­ferenzprodukts entstehen.

• FUr die Mengen der in der Produktion eingesetzten Schadstoffe konnen hinge­gen Mindestanforderungen bestehen, z.B. in Form von gesetzlich geforderten Rticknahme- oder Recyclingquoten. Die zugehorigen Restriktionen lauten:

I

Ld; 'Zk ~Rf 1= 1, ... ,N k=l

In diesem Fall gilt, daB fUr samtliche Stoffe ohne eine explizit vorgegebene Mindestmenge R[ = 0 betragt. Der Schadstoffvemichtungskoeffizient d; gibt an, welche Menge des Schadstoffs lim ProduktionsprozeB k je Einheit des Re­ferenzprodukts eingesetzt wird.

FaBt man die Emissionskoeffizienten c~ zu einer Matrix

Page 107: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 95

c1 1 c2

1 cf c= c~ c~ c~

ck cit c~

und die Schadstoffvernichtungskoeffizienten dj zu einer Matrix

dl df df D= di di di

zusammen, so ergibt sich die allgemeine Technologiemenge einer urn Umwelt­giiter erweiterten linearen Technologie unter Berucksichtigung von Beschdin­kungen bei den Input- oder Outputmengen als:

A·.?; =r S;ro

B·.?;=~~~o

T:= ~ = (r;~;X;R) e 9t~+m+M+N ~ . .?; = X S; XO

D·.?;=R~Ro .?;~Q

2.3.2.4.3 Darstellung verschiedener Proze8typen

Auch in der urn Umweltgiiter erweiterten Technologie wird jeder Produktions­prozeB k durch eine Spalte der Technologiematrix dargestellt (vgl. Abschnitt 2.3.1.4).

(!;.k

uk = Ii eT ck

g/ Je nachdem, welche giiterwirtschaftlichen und we1che umweltrelevanten Wirkun­gen ein ProzeB aufweist, sind bestimmte Teile dieses Vektors mit nicht-negativen

Page 108: Produktionstheorie ||

96 2. Ertragsgesetzliche Produktionsfunktionen

Elementen oder mit Nullen besetzt. Insbesondere lassen sich bestimmte Arten von Prozessen wie folgt charakterisieren:

• Ein herkommlicher ProduktionsprozefJ ist dadurch gekennzeichnet, daB Pro­duktionsfaktoren eingesetzt werden und neben den Produkten Schadstoffe als unerwiinschte Kuppelprodukte entstehen. Ein bewuBter Einsatz von Schadstof­fen findet nicht statt. Daher gilt:

,l ~O zl ~O fk ~O

tik =0

• Bei einem reinen EntsorgungsprozefJ hingegen steht die Vernichtung von Schadstoffen im Vordergrund; eine Produktion von anderen Glitem findet in der Regel nicht statt. Dazu ist der Einsatz von Produktionsfaktoren erforder­lich, und es konnen Emissionen von anderen Schadstoffen oder andere uner­wiinschte Wirkungen, wie die Inanspruchnahme von Deponieraum, auftreten. Es gilt somit:

,l ~O 1/ =0

fk ~O

tik ~O

• Kennzeichen eines Recyclingprozesses ist, daB aus Schadstoffen anderer Pro­duktionsprozesse unter Einsatz von Produktionsfaktoren am Markt verwertba­re Gliter erzeugt werden. Auch dabei treten in der Regel gewisse Schadstoff­emissionen auf. Es gilt:

II ~O 1/ ~O fk ~O

tik ~O

• Der Einsatz eines additiven Entsorgungsveifahrens, z.B. eines Filters, laBt sich abbilden, indem der bisherigen Technologiemenge ein EntsorgungsprozeB hin­zugefiigt wird, der fUr den betreffenden Schadstoff hOhere Vernichtungskoef-

Page 109: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 97

fizienten als die bisher installierten Prozesse aufweist und daher in einer effi­zienten ProzeBkombination enthalten sein wird.

• Integrierte Umweltschutzverfahren bedeuten die Entwicklung eines neuen Prozesses zur Herstellung bestimmter Produkte, der geringere Schadstoffent­stehungskoeffizienten oder hohere Schadstoffvernichtungskoeffizienten auf­weist. Ein derartiger, im Rahmen des umweltsparenden technischen Fort­schritts erfolgender ProzejJwechsel ist durch einen geringeren Schadstoffaus­stoB bei gleichem oder moglichst geringerem Verbrauch an Produktionsfakto­ren und gleicher oder hoherer Ausbringungsmenge gekennzeichnet. Das neue Verfahren wird daher in einer effizienten ProzeBkombination genutzt.

2.3.2.4.4 Analyse einer linearen Technologie mit Umweltgiitern

Durch die Einbeziehung von Umweltwirkungen der Produktion hat die Zahl der Dimensionen des Giiterraums zugenommen; es ergeben sich daher zahlreiche weitere Moglichkeiten fUr achsenparallele Schnitte durch das Ertragsgebirge. Um die Austauschbeziehungen zwischen den vier unterschiedlichen Giiterarten voll­standig zu erfassen, waren insgesamt 16 qualitativ verschiedene Untersuchungen anhand parametrischer linearer Programme erforderlich. Jedoch laBt sich fest­stellen, daB aufgrund der grundlegenden Eigenschaften parametrischer linearer Programme (vgl. nochmals Abschnitt 2.3.1.5) formale Analogien zwischen den neu auftretenden und den zuvor betrachteten Problemen bestehen:

• Immer dann, wenn bei einer zu minimierenden Zielfunktion eine :5;-Restriktion parametrisch variiert wird, nimmt der Verlauf des Zielfunktionswerts die Form einer Isoquante an.

• Wenn hingegen bei einer zu minimierenden Zielfunktion eine ~-Restriktion variiert wird, erhalt man eine Kurve yom Typ der Faktoreinsatzlunktion.

• Die Variation einer :5;-Restriktion in einem Maximierungsproblem ftihrt zu ei­nem qualitativen Verlauf der Zielfunktion, der der Produktionsfunktion bei partieller Faktorvariation entspricht.

• Bei Variation einer ~-Restriktion in einem Maximierungsproblem ergibt sich schlieBlich ein der Transformationskurve entsprechender Verlauf der Ziel­funktion.

In Tabelle 4 ist zusammengestellt, wie sich diese prinzipiellen KurvenverHiufe den verschiedenen Untersuchungsmoglichkeiten zuordnen lassen.

Page 110: Produktionstheorie ||

98 2. Ertragsgesetzliche Produktionsfunktionen

Tabelle 4: KurvenverHiufe

Typ der Zielfunktion Typ der variierten Restriktion Verlauf der Zielfunktion

Minimiere Einsatz eines Obergrenze fUr anderen Isoquante Produktionsfaktors Produktionsfaktor

Minimiere Einsatz eines Mindestmenge eines Faktoreinsatzfunktion Produktionsfaktors Produkts

Minimiere Einsatz eines Obergrenze fiir einen Isoquante Produktionsfaktors Schadstoff

Minimiere Einsatz eines Mindesteinsatz eines Faktoreinsatzfunktion Produktionsfaktors Schadstoffs

Maximiere Erzeugung Obergrenze fiir einen Produktionsfunktion eines Produkts Produktionsfaktor

Maximiere Erzeugung Mindestmenge eines Transformationskurve eines Produkts anderen Produkts

Maximiere Erzeugung Obergrenze fiir einen Produktionsfunktion eines Produkts Schadstoff

Maximiere Erzeugung Mindesteinsatz eines Transformationskurve eines Produkts Schadstoffs

Minimiere Entstehung Obergrenze fiir einen Isoquante eines Schadstoffs Produktionsfaktor

Minimiere Entstehung Mindestmenge eines Faktoreinsatzfunktion eines Schadstoffs Produkts

Minimiere Entstehung Obergrenze fiir anderen Isoquante eines Schadstoffs Schadstoff

Minimiere Entstehung Mindesteinsatz eines Faktoreinsatzfunktion eines Schadstoffs Schadstoffs

Maximiere Einsatz Obergrenze fiir einen Produktionsfunktion eines Schadstoffs Produktionsfaktor

Maximiere Einsatz Mindestmenge eines Transformationskurve eines Schadstoffs Produkts

Maximiere Einsatz Obergrenze fiir einen Produktionsfunktion eines Schadstoffs Schadstoff

Maximiere Einsatz Mindesteinsatz eines Transformationskurve eines Schadstoffs anderen Schadstoffs

Page 111: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 99

Dabei sind die vier bereits explizit untersuchten klassischen Problemstellungen, bei denen keine Umweltfaktoren berucksichtigt werden, durch Fettdruck hervor­gehoben. Diese VerHiufe gelten auch - wie bereits an anderer Stelle erortert - ffir nicht-achsenparallele Schnitte, d.h. bei gemeinsamer Variation mehrerer Restrik­tionen gleichen Typs.

1m folgenden wird die Analyse einer linearen Technologie mit Umweltbeziehun­gen anhand eines numerischen Beispiels, dessen Ausgangsdaten in Tabelle 5 an­gegeben sind, vorgenommen. Die zugrunde gelegte Technologie umfaBt insge­samt zehn Produktionsprozesse, von denen die Prozesse 1 bis 5 sowie 8 reine Produktionsprozesse sind; die Prozesse 6 und 7 sind Recyclingprozesse und die Prozesse 9 und 10 reine Entsorgungsprozesse (vgl. KISTNER I STEVEN [1993a] sowie zu den Berechnungen STEVEN [1994a], S. 96 ff.).

Tabelle 5: Technologie mit Umweltgiitem

ProzeB 1 2 3 4 5 6 7 8 9 10 Mindest-/ Hochst-menge

Faktor 1 2 3 1 3 1 1,5 0 1 2 1 ::;; 20

Faktor 2 0,5 1 2,5 1,5 2 2 1 7 1 0 ::;; 15

Produkt 1 1 2 1,5 2 3 2 2,5 0 0 0 ~ 12

Produkt2 1 0,5 2 1 1 2 3 2,5 0 0 ~1O

Emission 1 1 2 1,5 1,2 1,3 1 1,2 0,1 2 0,5 ::;; 15

Emission 2 0,8 1 1,2 1 1,5 2 4 5 0 0,5 ::;; 18

Schadstoff- 0 0 0 0 0 0 1 0 2 2 ~ 0 einsatz 1 Schadstoff- 0 0 0 0 0 1 0 0 3 2 ~ 1 einsatz2

Die sich ffir dieses Beispiel ergebenden KurvenverUiufe bei den vier bereits be­handelten Untersuchungsmoglichkeiten einer linearen Technologie sind in Abbil­dung 38 dargestellt.

Page 112: Produktionstheorie ||

100

a) ProduktionsfUnktion

Produkt 1

15

10

5

o~~--~~--~~--~~--~ o 5 W H W ~ ~ ~

Faktorl

c) Isoquante

Faktor 1

14

12

W

8

6

4

2

0 0 2 4 6 8 10 12

Faktor2

2. Ertragsgesetzliche Produktionsfunktionen

Faktor 1

35

30

25

20

15

10

b) Faktoreinsatzfunktion

51---__ ----O+-----~----,_----_r----~

o 5 10 15 Produkt 1

d) Transformationskurve

Produkt 1

14

12

10

8

6

4

2

0 0 2 4 6 8

Produkt2

Abb. 38: KurvenverHi.ufe bei den traditionellen Untersuchungen

Da die in Tabelle 5 angegebene Technologie auch Umweltgiiter umfaBt, ergeben sich zusatzliche Untersuchungsmoglichkeiten. Diese werden nicht vollstandig, sondem anhand charakteristischer Beispiele diskutiert. Die zugehorigen Kurven­verlaufe sind in Abbildung 39 dargestellt.

(l) Schadstoffaussto.f3 in Abhiingigkeit vom F aktoreinsatz

Zunachst wird untersucht, wie der SchadstoffausstoB yom Einsatzniveau der Pro­duktionsfaktoren abhangt. Dazu wird eine Emissionsrestriktion als zu minimie­rende Zielfunktion gewahlt und eine Faktoreinsatzrestriktion parametrisch vari­iert. Der konvexe, swckweise linear fallende Verlauf der ZielfUnktion bedeutet,

Page 113: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 101

daB bei gegebener Technologie eine Schadstoffreduktion durch hnmer groSere Einsatzmengen von Produktionsfaktoren erkauft werden muB bzw. daB eine Re­duktion der Faktoreinsatzmenge zu einem iInmer hoheren SchadstoffausstoS fiihrt. Die Dualvariable der variierten Restriktion gibt das marginale Aus­tauschverhaItnis zwischen dem betrachteten Schadstoff und dem Produktions­faktor an.

(2) Austauschverhiiltnis zweier Schadstoffemissionen

Weiter laSt sich untersuchen, wie sich die Variation einer Emissionsgrenze auf die Entstehung eines anderen Schadstoffs auswirkt. Dabei bleibt die Zielfunktion des zuletzt untersuchten Problems erhalten, eine weitere Emissionsrestriktion wird parametrisch variiert. Auch hier ergibt sich ein konvexer, sruckweise linear fallender VerIauf. Das bedeutet, daB die Reduktion der Entstehung eines ausge­wahlten Schadstoffs durch eine ErhDhung des Emissionsniveaus des anderen Schadstoffs erkauft werden muS, d.h. die Mengen unterschiedlicher Emissionen werden gegeneinander substituiert. Dementsprechend laBt sich die der variierten Restriktion zugeordnete Dualvariable als Grenzrate der Schadstoffsubstitution bzw. als okologische Austauschrate zwischen den beiden Schadstoffen interpre­tieren.

(3) Schadstoffausstofl in Abhiingigkeit vom Produktionsniveau

Variiert man bei gleicher Zielfunktion eine Mindestausbringungsmenge, so erhaIt man die Abhangigkeit des SchadstoffausstoBes von einer Ausweitung oder Ein­schriinkung der Produktion. Der konvexe, sruckweise linear steigende VerIauf der Zielfunktion bei dieser Problemstellung bedeutet, daB bei zunehmender Auswei­tung der Produktion die dafiir in Kauf zu nehmende Emission nicht nur absolut, sondem auch je Produkteinheit ansteigt. Die zugehorige Dualvariable gibt den GrenzausstoB des Schadstoffs je Produkteinheit an. Auch dieser VerIauf laBt sich durch die Notwendigkeit des sukzessiven ProzeSwechsels zu immer ungiinstige­ren Produktionsprozessen erkUiren.

(4) Schadstoffausstofl in Abhiingigkeit von der geforderten Entsorgung

Ais nachstes wird die Abhangigkeit des SchadstoffausstoSes von der Variation der geforderten Entsorgung, d.h. der Vernichtung eines anderen Schadstoffs, un­tersucht. Dazu wird bei weiterhin unveranderter Zielfunktion nunmehr eine Ent­sorgungsrestriktion parametrisch variiert. Aufgrund der formalen Analogie dieses

Page 114: Produktionstheorie ||

102 2. Ertragsgesetzliche Produktionsfunktionen

Problems zu Fall (3) hat die Zielfunktion auch hier den VerIauf einer Faktorein­satzfunktion, d.h. die Vernichtung des Schadstoffs, die als Produktion einer Ent­sorgungsleistung interpretiert werden kann, ist wie die Herstellung eines Produkts mit immer groBeren Emissionen anderer Schadstoffe verbunden. Das bedeutet, daB auch dem Umweltschutz dienende Aktivitaten, wie Entsorgungs- und Recyc­lingprozesse, in der Regel mit Umweltbelastungen an anderer Stelle verbunden sein konnen. Die der variierten Restriktion zugeordnete Dualvariable gibt den GrenzausstoB des emittierten Schadstoffs je vernichteter Einheit des eingesetzten Schadstoffs an.

(5) Entsorgung in Abhiingigkeit von der Produktion

Weiter lii.Bt sich untersuchen, wie die maximal mogliche Entsorgungsmenge eines Schadstoffs von der Mindestausbringungsmenge eines Produkts abhangt. Dazu wird eine Entsorgungsrestriktion als zu maximierende Zielfunktion gewiihlt und eine Mindestausbringungsmenge parametrisch variiert. Es ergibt sich ein konka­ver, monoton fallender VerIauf des optimalen Zielfunktionswerts. Dies entspricht dem VerIauf einer Transformationsfunktion, d.h. Entsorgung und Produktion sind formal als aquivalent anzusehen. Urn die Entsorgung des Schadstoffs zu erhohen, muB bei Konstanz aller anderen Restriktionen die Produktion des Produkts immer starker reduziert werden. Die der variierten Restriktion zugeordnete Dualvariable gibt das Austauschverhaltnis zwischen Produktion und Entsorgung an, sie nimmt in den Knickpunkten sprunghaft abo

(6) Abhiingigkeit zwischen zwei Entsorgungsmoglichkeiten

SchlieBlich ist die Abhangigkeit zwischen zwei unterschiedlichen Entsorgungs­moglichkeiten zu untersuchen. Dazu wird eine Entsorgungsrestriktion als Ziel­funktion gesetzt und eine weitere parametrisch variiert. Auch diese Funktion hat den qualitativen VerIauf einer Transformationsfunktion, d.h. sie ist konkav und smckweise monoton fallend. Fiir die im Beispiel zugrunde gelegte Technologie existiert allerdings nur ein einziger effizienter Punkt; alle anderen Kombinationen der Entsorgungsmoglichkeiten bedeuten die Verschwendung von Entsorgungs­potential. Die der variierten Restriktion zugeordnete Dualvariable laBt sich als Grenzrate der Substitution zwischen den beiden Entsorgungsmoglichkeiten inter­pretieren.

Page 115: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 103

Emission 1 Emission 1

14 8

L 12

6 10

8 4 6

2 4

2

0 0 0 2 4 6 8 10 0 5 10 15

Faktor 1 Emission 2

(1) (2)

Emission 1 Emission 1

25 15

20

15 10

10 5

5

0 0 0 5 10 15 20 25 0 5 10 15 20 25 30

Produktl Entsorgung 1

(3) (4)

Entsorgung 1 Entsorgung 1 ~

30

30 25

20 20

15

10 10

5

0 0 .. 0 5 10 15 20 25 0 5 10 15 20 25 30

Produkt 1 Entsorgung 2

(5) (6)

Abb. 39: KurvenverHiufe bei den umweltbezogenen Untersuchungen

Page 116: Produktionstheorie ||

104 2. Ertragsgesetzliche Produktionsfunktionen

2.3.2.4.5 Bedeutung von Umweltgiitern

Wie die vorstehenden Uberlegungen gezeigt haben, lassen sich bei produktions­theoretischen Betrachtungen im Rahmen der linearen AktiviUitsanalyse gewisse Ubereinstimmungen zwischen herkommlichen Giltem und Einsatzfaktoren sowie Umweltgiitem und -faktoren feststellen. Insbesondere sind

• bei der Produktion entstehende Schadstoffe X als formal aquivalent zu einge­setzten Produktionsfaktoren r. sowie

• bei der Produktion vernichtete Schadstoffe B. als formal aquivalent zu er-wiinschten Produkten :!

anzusehen und entsprechend zu behandeln. Bei der expliziten bzw. impliziten Analyse aller denkbaren Schnitte durch den Gilterraum ist der Nachweis erbracht worden, daB auch eine urn Umweltgiiter und -faktoren erweiterte lineare Tech­nologie neoklassische Eigenschaften aufweist. Insbesondere konnten aufgezeigt werden:

(1) Substitutionalitiitsbeziehungen

Wahrend sich in der traditionellen AktiviUitsanalyse substitutionale Beziehungen mit einer abnehmenden Grenzrate der Substitution zwischen den eingesetzten Produktionsfaktoren nachweisen lassen, kann dieses Ergebnis auch auf die Be­ziehung zwischen

• der Emission verschiedener Schadstoffe,

• dem Einsatz von Produktionsfaktoren und der Entstehung von Schadstoffen

ilbertragen werden. Das bedeutet, daB zum einen bei gegebener Technologie ein Abwagen zwischen verschiedenen Schadstoffen notwendig ist: Die Konzentra­tion auf die Reduzierung eines bestimmten Schadstoffs, der z.B. gerade in der offentlichen und politischen Diskussion als besonders wichtig angesehen wird, bewirkt ceteris paribus ein Ansteigen der Emissionen von anderen Schadstoffen. Zum anderen impliziert die Substitutionalimt von Produktionsfaktoreinsatz und Schadstoffentstehung, daB die Verringerung von Emissionen durch hoheren Faktoreinsatz erkauft werden moB.

Hier ist also ein Denken nicht nur in okonomischen, sondem auch in okologi­schen Austauschraten erforderlich: So erwilnscht die Reduktion einer bestimmten Emission auch sein mag, ruft sie doch unerwiinschte Wirkungen an anderen Stellen hervor, so daB ab einem bestimmten Punkt die Gesamtwirkung nachteilig ist.

Page 117: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 105

(2) Ertragsgesetzliche Beziehungen

Der ertragsgesetzliche Verlauf der Produktionsfunktion bei partieller Faktorva­riation impliziert positive, aber nicht zunehmende Ertragszuwachse bei Auswei­tung des Faktoreinsatzes, d.h. einen ertragsgesetzlichen Verlauf. Solche ertrags­gesetzlichen Beziehungen gelten ebenso fiir

• die Abhangigkeit der Entsorgung vom Faktoreinsatz,

• die Abhangigkeit der Produktion von der Schadstoffemission,

• die Abhangigkeit der moglichen Entsorgung von der Schadstoffemission.

Das bedeutet, daB auch bei beliebig hohem Faktoreinsatz bzw. beliebig hohen Emissionsgrenzen keine vollstandige Vemichtung von Schad- und Reststoffen moglich ist und daB sich auch bei unendlich hoher Inkaufnahme von Emissionen die Produktion nicht beliebig ausdehnen liiBt. Auch hier ware anhand der Aus­tauschraten ein okologisch-okonomisches Optimum als der Punkt zu bestimmen, ab dem die negativen Wirkungen einer zusatzlichen Produkteinheit bzw. einer zusatzlichen Entsorgungsleistung ihre positiven Aspekte iibersteigen.

(3) Transjormationsbeziehungen

SchlieBlich liiBt sich das Konzept der Transformationskurve zwischen erwiinsch­ten Produkten, wonach bei Konstanz aller anderen Restriktionen die Ausweitung der Ausbringungsmenge eines Produkts immer groBere Reduktionen bei einem anderen Produkt erfordert, iibertragen auf

• die Beziehung zwischen Produktion und Entsorgung,

• die Beziehung zwischen verschiedenen Entsorgungsleistungen.

Es gilt also allgemein, daB die Ausweitung einer gewiinschten Leistung einen immer groBeren Verzicht auf andere erwiinschte Leistungen erfordert. Dadurch wird ein Abwagen zwischen dem Nutzen der verschiedenen Leistungen notwen­dig. Bei effizienter Nutzung einer gegebenen Technologie gilt das okonomische Grundprinzip des Denkens in Austauschraten: Eine Verbesserung der Umweltsi­tuation durch Schonung von Ressourcen, Verringerung von Schadstoffemissio­nen oder vermehrte Entsorgung ist nur durch einen Verzicht an anderer Stelle moglich, d.h. durch die Inkaufnahme geringerer Giiterproduktion oder die Erho­hung der Umweltbelastung an einer anderen Stelle.

Weiter wurde anhand der Beispiele gezeigt, daB auch fUr Umweltgiiter eine kon­sistente Interpretation der den Restriktionen zugeordneten Dualvariablen - in Abhangigkeit von dem gewiihlten Schnitt durch den Giiterraum, d.h. von der

Page 118: Produktionstheorie ||

106 2. Ertragsgesetzliche Produktionsfunktionen

Auswahl der Zielfunktion und der zu variierenden Restriktion - moglich ist. Form und Verlauf der resultierenden Funktionen ergeben sich direkt aus den in Ab­schnitt 2.3.1.5 dargestellten Eigenschaften der LOsungsmenge bei der parametri­schen linearen Programmierung. Auch wenn einzelne Restriktionen nicht die bislang vorausgesetzte Form haben, z.B. fiir Produkte zusatzlich ~-Bedingungen als Absatzobergrenzen vorliegen, fUr Schadstoffe neben Mindest- auch technisch determinierte Hochsteinsatzmengen zu beachten sind oder einzelne Restriktionen als Gleichungen zu erfiillen sind, bleiben wegen der Moglichkeit von ProzeB­kombinationen die Form und der Verlauf der Kurven prinzipiell erhalten.

AbschlieBend ist festzustellen, daB offensichtlich keine Separabilitat von okono­mischen und okologischen Entscheidungen besteht, sondem daB diese vielmehr simultan zu treffen sind. 1m Rahmen einer okonomisch-okologischen Optimie­rung ware daher auf der Basis einer gesamtwirtschaftlichen Nutzenfunktion der Umfang von Umweltnutzung und Giiterversorgung zu bestimmen, der den Ge­samtnutzen der Gesellschaft maximiert bzw. zu einem Ausgleich der Grenznut­zen samtlicher Individuen fiihrt.

2.3.3 Produktionsplanung im Rahmen der linearen Aktivitiitsanalyse

Wie bereits im Rahmen der neoklassischen Produktionstheorie (vgl. Abschnitt 2.2.2), ist auch bei der linearen Aktivimtsanalyse eine Bewertung von Gtitermen­gen mit Preisen erforderlich, um zu Aussagen zu gelangen, die tiber die Betrach­tung rein mengenmaBiger Austauschbeziehungen und die Herleitung von effizi­enten Bereichen hinausgehen. Zunachst wird wiederum in Abschnitt 2.3.3.1 die Zielsetzung der Kostenminimierung und anschlieBend in Abschnitt 2.3.3.2 die Gewinnmaximierung untersucht. Um nicht durch zu viele Details den Blick auf die wesentlichen Zusammenhange zu verstellen, wird in diesen Abschnitten der Einproduktfall zugrunde gelegt, in Abschnitt 2.3.3.3 erfolgt eine Verallgemeine­rung der gewonnenen Erkenntnisse auf die komplexeren FaIle.

2.3.3.1 Kostenminimierung Um eine bestimmte Ausbringungsmenge x zu minimalen Kosten herstellen zu konnen, ist die zugehorige Minimalkostenkombination zu bestimmen. Sie gibt gerade diejenige Kombination von Faktoreinsatzmengen an, die bei gegebenen Faktorpreisen zu minimalen Kosten fiir die Ausbringungsmenge x ftihrt. Die gra­phische Losung dieser Aufgabe ist fiir den Fall zweier Einsatzfaktoren in Abbil­dung 40 dargestellt.

Page 119: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse

: " '-~.---- x=x "C~;- .CQ

~----'1--~2----------~--~rl r r 1 1

Abb. 40: Minimalkostenkombination

107

Die Minimalkostenkombination liiBt sich graphisch ermitteln, indem die Isoko­stengerade, deren Steigung durch das Verhaltnis der Faktorpreise determiniert ist, soweit parallel verschoben wird, bis sie die Isoquante zu der Ausbringungsmenge x gerade tangiert. Das zugehorige Kostenniveau gibt den minimalen Betrag an, den man aufwenden muG, urn x herzustellen. Mit einem geringeren Kostenni­veau UiBt sich x nicht erzeugen, bei einem hOheren Kostenniveau Hi.ge Unwirt­schaftlichkeit vor, da entweder iiberschiissige Faktormengen gekauft wiirden oder ein ineffizienter ProduktionsprozeG genutzt wiirde.

Da in der linearen AktiviUi.tsanalyse die Isoquante nicht durch eine stetig diffe­renzierbare, sondem durch eine smckweise lineare konvexe Funktion gegeben ist, sind bei der Ermittlung der Minimalkostenkombination zwei unterschiedliche Falle denkbar, die ebenfalls in Abbildung 40 dargestellt sind:

(1) Aufgrund des Verhaltnisses der Faktorpreise verlauft die Isokostengerade so, daB sie die Isoquante in einem Knickpunkt tangiert. In diesem Fall erhalt man eine eindeutige Lasung; die Faktoreinsatzmengen bei der Minimalkosten­kombination betragen rIO und r2°. Die Produktion von x erfolgt mit einem reinen ProduktionsprozeB. Dieser Fall ergibt sich fUr die meisten Preisver­haltnisse.

(2) FUr einige ausgewiihlte Preisverhaltnisse verlauft jedoch die Isokostengerade parallel zu einem Teilsmck der Isoquante. In diesem Fall fiihren mehrere

Page 120: Produktionstheorie ||

108 2. Ertragsgesetzliche Produktionsfunktionen

Faktoreinsatzmengenkombinationen zu den minima1en Kosten fUr die Her­stellung von x; zu jeder Einsatzmenge des Faktors 1 aus dem Intervall [rl;rt] existiert eine Einsatzmenge des Faktors 2 aus dem Intervall [r20;r~], so daB x kostenminimal hergestellt wird. In den Endpunkten der fett einge­zeiehneten Streeke wird jeweils mit einem reinen ProduktionsprozeB produ­ziert, bei allen dazwisehen liegenden Punkten findet eine ProzeBkombination der beiden das Teilsruek begrenzenden reinen Prozesse statt.

Die aus Absehnitt 2.2.2.1 bekannte Bedingung fUr das Vorliegen einer Minimal­kostenkombination ist daher wie folgt zu modifizieren:

Eine AktivWit ist genau dann kostenminimal, wenn fUr alle i,j gilt:

- > qj > + sij _-_ sij qi

Dabei gibt sij die linksseitige und sij die reehtsseitige Grenzrate der Substitution ffir einen bestimmten Punkt auf der Isoquante an. Wahrend diese Bedingung im Fall (1) als strikte Ungleichung erffillt ist, gilt sie im Fall (2) ffir alle eehten Kon­vexkombinationen der beiden begrenzenden Prozesse als Gleichung.

Diese Bedingung ist zwar hilfreieh, wenn es gilt, eine bestimmte AktiviUit dar­aufhin zu fiberprfifen, ob sie ffir gegebene Faktorpreise Minimalkostenkombina­tion ist oder nieht, sie ist jedoeh nieht operational zur Bestimmung der Minimal­kostenkombination. Hierfiir ist vielmehr das folgende lineare Programm zu lasen:

n

min K= L'i ·qi i=1

I

u.d.N.: La!. Zk = ri k=1

I

LZk =xo k=1

Zk ~o

i = 1, ... ,n

k = 1, ... ,1

Aufgrund des Eckentheorems der linearen Programmierung gilt, daB sich die Mi­nimalkostenkombination immer mit einem reinen ProduktionsprozeB erreiehen laBt (vgl. KISTNER [1993b], S. 27 f.). Setzt man namJ.ieh die erste Nebenbedin­gung des Programms in die Zielfunktion ein, so ergibt sieh:

Page 121: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse

n I

min K= I, I,af ·Zk ·qi i=1 k=1

I u.d.N.: I,Zk = xO

k=1

Zk ~O

109

k =1, ... ,1

Da es sich nunmehr urn ein lineares Programm mit einer einzigen Restriktion handelt, nimmt in jeder Basislosung hOchstens eine Variable zk einen positiven Wert an. Dies gilt auch ffir die optimalen Basislosungen. Falls es mehrere opti­male Basislosungen gibt, so ist jede Konvexkombination dieser Losungen opti­mal. Somit liefert das Eckentheorem der linearen Programmierung die ErkHirung ffir die in Abbildung 40 dargesteUten Fiille (1) und (2).

Nun ist es ffir die Zwecke der Produktionsplanung in der Regel jedoch nicht aus­reichend, bei einem gegebenen Preissystem die Minimalkostenkombination ffir eine vorgegebene Ausbringungsmenge zu bestimmen. Vielmehr ist die Kosten­funktion von Interesse, die die Abhangigkeit der Gesamtkosten von der Ausbrin­gungsmenge angibt. Ausgangspunkt ffir ihre Herleitung ist die Definition der Ko­sten als Bewertung der Faktoreinsatzmengen mit ihren Preisen:

n

K=I,1f·qi i=1

Hierbei sind drei Flille zu unterscheiden:

(1) Bei totaler Faktorvariation erfolgt die Ausdehnung der Produktion, wie be­reits in Abschnitt 2.3.2.1 festgestellt wurde, entlang eines ProzeBstrahls. Auf diesem gilt insbesondere die Eigenschaft konstanter Produktionskoeffizien­ten. Bei gegebenen Faktorpreisen qi ergeben sich daher die Stiickkosten eines (reinen oder gemischten) Prozesses k mit den Produktionskoeffizienten af als:

n

ck = I,af ·qi i=1

Die Gesamtkostenfunktion verHiuft somit, wie in Abbildung 41 dargestellt, linear durch den Ursprung. Die Kosten einer Produktion mit diesem ProzeB ergeben sich durch Multiplikation der herzustellenden Ausbringungsmenge mit dem konstanten Stfickkostensatz ck :

K(X}=Ck ·X

Page 122: Produktionstheorie ||

110 2. Ertragsgesetzliche Produktionsfunktionen

K

x

Abb. 41: Kostenverlauf bei totaler Faktorvariation

(2) 1st nur ein einziger Produktionsfaktor variabel (ohne Beschrankung der All­gemeinheit sei bier der erste Faktor als variabel betrachtet) und werden alle anderen Faktoren konstant gehalten, so ist ebenfalls eine explizite Darstel­lung der Gesamtkosten in Abhangigkeit von der Ausbringungsmenge mog­lich. Die Kosten der konstanten Produktionsfaktoren i = 2, ... ,n sind in die­sem Fall Fixkosten, da sie unabhangig von der Produktionsentscheidung an­fallen:

n

KF = ~>iO ·qi i=2

Die mit einer bestimmten Ausbringungsmenge verbundenen Kosten hangen nunmehr lediglich davon ab, mit welchem ProzeB bzw. welcher ProzeBkom­bination diese erzeugt wird. Entsprechend den in Abschnitt 2.3.2.2 ange­stellten Uberlegungen zur Produktionsfunktion bei partieller Faktorvariation wird bei der Ausdehnung der Produktion zunachst der kostengUnstigste Pro­zeB genutzt, d.h. der mit dem geringsten Produktionskoeffizienten bezilglich des variablen Produktionsfaktors. Bei AusschOpfung eines flxen Faktors ist jeweils ein ProzeBwechsel erforderlich, so daB sich der in Abbildung 42 dar­gestellte, stiickweise linear steigende, konvexe Verlauf der Kostenfunktion ergibt.

Page 123: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 111

K

K(x)

KFL-----

x

Abb. 42: Kostenverlauf bei partieller Faktorvariation

Die mit einer bestimmten Ausbringungsmenge verbundenen Kosten lassen sich berechnen, indem berticksichtigt wird, welche Produktionsprozesse zu ihrer Erzeugung in we1chem Umfang genutzt werden:

I

LZk =xo k=l

I

K(x) = KF + Lat 'Zk 'ql k=l

(3) Sind schlieBlich mehrere Produktionsfaktoren variabel und mindestens ein Faktor konstant, so erhalt man die Kostenfunktion, indem ftir jede vorgege­bene Ausbringungsmenge unter Berticksichtigung der EngpaBfaktoren die Minimalkostenkombination ermittelt wird. Es seien - ohne Beschriinkung der Allgemeinheit - die ersten nl Produktionsfaktoren in konstanten Mengen ver­ftigbar und die Faktoren i = nl + l, ... ,n in beliebigen Mengen beschaftbar. Die konstanten Produktionsfaktoren, bei denen es sich z.B. urn Lagerbestiin­de, Betriebsmittel oder Arbeitskriifte handelt, ftihren zu Fixkosten in Hohe von:

nl

KF = L'i° 'qi i=l

Bei der Bestimmung der variablen Stuckkosten des Produktionsprozesses k sind nun lediglich die variablen Produktionsfaktoren zu berticksichtigen:

Page 124: Produktionstheorie ||

112 2. Ertragsgesetzliche Produktionsfunktionen

n

ck = L at 'qi i=nt+1

Solange noch keine Faktoreinsatzmengenbeschrankung greift, liefert der Pro­zeB k mit den geringsten variablen Stiickkosten die Minimalkostenkombina­tion, der Anstieg der Kostenfunktion entspricht ck' Bei Ausschopfung der vorhandenen Menge des relativ knappsten Einsatzfaktors ist ein ProzeBwech­sel erforderlich. Der als nachstes genutzte ProzeB weist einen geringeren Produktionskoeffizienten beziiglich des EngpaBfaktors und hOhere Produk­tionskoeffizienten fUr mindestens einen weiteren Einsatzfaktor auf; seine va­riablen Stiickkosten liegen tiber denen des zuerst genutzten Prozesses.

Zur vollstandigen Herleitung der Kostenfunktion wird das folgende parame­trische lineare Programm gelost, das zu jeder Ausbringungsmenge die Mini­malkostenkombination bestimmt:

I

min K= LCk 'Zk (+KF) k=l

I u.d.N.: Lat 'zk ~ r;O

k=l

I LZk ~7C'XO k=l

Zk ~O

i = 1, ... ,nl

k = 1, ... ,1

Der Fixkostenterm beeinfluBt lediglich die Lage der Kostenfunktion, jedoch nicht ihren Verlauf. Aufgrund der allgemeinen Aussagen der parametrischen linearen Programmierung (vgl. nochmals Abschnitt 2.3.1.5) ergibt sich eine konvexe, stiickweise linear steigende Funktion, denn es wird eine ~-Restrik­tion in einem Minimierungsproblem variiert. Der qualitative Verlauf der auf diese Weise bestimmten Kostenfunktion fUr mehrere variable Einsatzfaktoren entspricht somit ebenfalls der in Abbildung 42 dargestellten Funktion.

Die der variierten Restriktion zugeordnete Dualvariable laBt sich als Grenz­kosten einer zusatzlichen Ausbringungseinheit interpretieren. Dajeder Knick­punkt einen ProzeBwechsel und damit den Ubergang zu einer kostenungiin­stigeren Faktoreinsatzmengenkombination bedeutet, weist diese Kostenfunk­tion nicht-abnehmende Grenzkosten auf.

Page 125: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 113

Es ist zusammenfassend festzustellen, daB die Kostenfunktion in einer linearen Technologie bei partieller Faktorvariation annahemd neoklassische VerUiufe aufweist. Die Kostenfunktion ist das Ergebnis eines Optimierungsprozesses, bei dem zu jeder Ausbringungsmenge die Minimalkostenkombination bestimmt wird.

2.3.3.2 Gewinnmaximierung

Bei der Gewinnmaximierung ist die optimale Ausbringungsmenge zu bestimmen, bei deren Herstellung mit der jeweiligen Minimalkostenkombination die Diffe­renz aus Erlosen und Kosten maximal wird. Die bereits in Abschnitt 2.2.2.2 ver­wendete Optimalitatsbedingung fUr das Gewinnmaximum lautet:

Preis = Grenzkosten

Auch hier ist zwischen der totalen und der partiellen Faktorvariation zu unter­scheiden:

Da bei totaler Faktorvariation die Kostenfunktion linear ansteigt, sind die Grenzkosten konstant und entsprechen den Stiickkosten. Die optimale Ausbrin­gungsmenge betragt daher entweder Null, falls der Preis des Produktes unterhalb der Stiickkosten liegt, oder sie ist nicht determiniert, falls der Preis groBer ist als die Stiickkosten.

Sobald Faktoreinsatzmengenbeschrankungen relevant sind, gilt der in Abbildung 42 dargestellte Verlauf der Kostenfunktion bei partieller Faktorvariation. Ihre Grenzkosten verlaufen stiickweise konstant; sie springen bei jedem ProzeBwech­sel auf ein neues Niveau. Die graphische Herleitung der gewinnmaximalen Aus­bringungsmenge erfolgt in Abbildung 43.

Die gewinnmaximale Ausbringungsmenge Xl ergibt sich als Schnittpunkt von Grenzkosten- und der durch den Marktpreis p gegebenen Grenzerlosfunktion. Wenn, wie hier dargestellt, der Marktpreis zwischen den linksseitigen und rechts­seitigen Grenzkosten der relevanten Ausbringungsmenge liegt, so ist die LOsung eindeutig.

Es kann jedoch auch der Fall auftreten, daB der Marktpreis gerade den Grenzko­sten auf einem Teilstiick der Funktion, z.B. im Intervall [X l ;X2 ] entspricht. Dann sind - analog zu der entsprechenden Situation bei der Herleitung der Minimalko­stenkombination - alle Ausbringungsmengen x E [Xl;X2] optimal, die zu diesen Grenzkosten hergestellt werden konnen.

Page 126: Produktionstheorie ||

114 2. Ertragsgesetzliche Produktionsfunktionen

P K'

K'

p

x

Abb. 43: Bestimmung der optimalen Ausbringungsmenge

Die gewinnmaximale Ausbringungsmenge liiBt sich auch mit Hilfe eines linearen Programms bestimmen. Dabei ist wegen der Entscheidungsirrelevanz der Fixk.o­sten der Deckungsbeitrag zu maximieren, der sich als Differenz aus Erlosen und variablen Kosten ergibt:

I I max DB = L(p-cd'Zk = Ldbk 'zk

k=l k=l

I u.d.N.: '" k 0 """ai . Zk ~ 1'; i = 1, ... ,nl

k=l

zk ~O k = 1, ... ,1

Dabei gibt dbk den Stiickdeckungsbeitrag des Produktionsprozesses k an, der sich bei Herstellung einer Produkteinheit mit diesem ProzeB ergibt.

Die optima1e Ausbringungsmenge erhalt man aus der LOsung dieses linearen Pro­gramms, indem man die Summe der optimalen ProzeBniveaus bildet:

I

x= Lz2 k=l

Interpretiert man die den Restriktionen dieses Programms zur Produktionspla­nung zugeordneten Dualvariablen als Faktorpreise qi, so liiBt sich das dem oben angegebenen Programm zugeordnete dua1e lineare Programm wie folgt formu­lieren:

Page 127: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 115

nl

min K = L/iO ·qi i=1

nl

u. d. N.: 'Laf· qi ~ dbk k = 1, ... ,1 i=1

i = 1, ... ,nl

Die aufgrund der Dualitiitstheorie geltenden Beziehungen zwischen dem prima­len Mengenmodell und dem dualen Bewertungsmodeillassen sich zu dem auf KOOPMANS [1951] zUrUckgehenden Preistheorem der linearen Programmierung zusammenfassen:

Preistheorem:

Zu einer optimalen Losung .?; * des Mengenmodells gibt es ein System von Zahlen

bzw. Preisen t ' die optimale Losung des Bewertungsmodells sind und den fol­genden Bedingungen gentigen:

nl

{:} {:} 'Laf ·qi dbk ¢::> * zk i=1

o k = 1, ... ,1

I

{:} r;o {:} 'Laf.Zk * ¢::> qi k=1

o i = 1, ... ,nl

Die untere Zeile des Preistheorems besagt, daB ein Preis q; nur dann einen posi­tiven Wert annehmen kann, wenn die zugehorige Restriktion des Mengenmodells ausgeschopft ist, d.h. der vorhandene Faktorbestand r;o vollstandig eingesetzt wird. Falls ein Faktorbestand durch die geplante Produktion nicht vollstlindig ausgeschOpft wird, ist der betreffende Faktor nicht knapp, das zugehorige q; nimmt den Wert Null an. Daher lassen sich die q; als interne Knappheitspreise fUr die Bewertung der Faktoreinsatzmengen r;o interpretieren.

Dementsprechend bedeutet die obere Zeile des Preistheorems, daB ein Produk­tionsproze8 nur dann auf einem positiven Niveau zk genutzt werden kann, wenn sein Deckungsbeitrag je Einheit gerade der intemen Bewertung der benotigten Faktoreinsatzmengen entspricht. Er wird hingegen nicht eingesetzt, wenn sein Deckungsbeitrag geringer ist als die mit den intemen Knappheitspreisen bewer­teten, je Produkteinheit benotigten Faktoreinsatzmengen.

Page 128: Produktionstheorie ||

116 2. Ertragsgesetzliche Produktionsfunktionen

2.3.3.3 Verallgemeinerung

Die vorstehenden Ubedegungen zur Produktionsplanung werden nun zunachst auf den Mehrproduktfall und anschlieBend auf die Berucksichtigung von Um­weltgiitern fibertragen.

Geht man im Mehrproduktfall davon aus, daB die variablen Produktionsfaktoren in beliebigen Mengen und zu bekannten Faktorpreisen qj beschafft und die Pro­dukte in beliebigen Mengen zu ebenfalls bekannten Preisen P j abgesetzt werden konnen, so sind lediglich die gegebenen Bestande der konstanten Produktions­faktoren 'i 0 als Restriktionen zu berucksichtigen.

Ohne Beschrankung der Allgemeinheit werden wiederum die ersten nl Einsatz­faktoren als konstante Faktoren angesehen, wahrend es sich bei den Faktoren i = nl + 1, ... ,n urn variable Produktionsfaktoren handeln solI. Damit ergibt sich nunmehr das folgende lineare Programm ffir die Produktionsplanung zur Dek­kungsbeitragsmaximierung:

m n max DB = LPj"Xj - L qj.'i

j=l j=nl+l

I

u. d. N.: La/ . Zk ~ 'i0 i = 1, ... ,nl k=l

I

L a/ . Zk - 'i = 0 i=nl+l, ... ,n k=l

1

Lb/ ·Zk -Xj = 0 j=I, ... ,m k=l

zk ~O k = 1, ... ,1

In der Zielfunktion dieses linearen Programms ist der Deckungsbeitrag eines mit dem Faktoreinsatz r. erzeugten Produktionsprogramms ~ angegeben. Die erste Gruppe von Restriktionen beschreibt die Einsatzmengenbeschrankungen der kon­stanten Produktionsfaktoren; die zweite und dritte Gruppe bilden die Definitions­gleichungen ffir die Einsatzmengen der variablen Faktoren bzw. fur die erzeugten Produkte.

Eine Erweiterung dieses Modells auf die Berucksichtigung von Umweltgutern laBt sich wie folgt vornehmen: Geht man davon aus, daB ein Teil der Schadstoff­emissionen direkt mit Abgaben als extern vorgegebenen Preisen belastet und ein

Page 129: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 117

anderer Teil durch Grenzwerte beschr8nkt: wird, so ist eine Erfassung der Um­weltwirkungen auf der Ausbringungsseite der Produktion analog zu den Faktorre­striktionen moglich. Ohne Beschrankung der Allgemeinheit seien die ersten M 1

Schadstoffe durch gesetzlich fixierte Grenzwerte bzw. gegebene Entsorgungska­pazitaten beschrankt, wahrend die Schadstoffe J = M 1 + 1, ... , M durch eine zur emittierten Menge proportionale Abgabe QJ gesteuert werden, die als Kostenbe­standteil in der Zielfunktion erfaBt wird. Auch die Erfassung einer progressiv steigenden Abgabe ist in diesem Modell moglich, indem der Anstieg der Ziel­funktion durch eine stiickweise lineare Funktion approximiert wird.

Die Vemichtung unerwiinschter Stoffe durch die Produktion fiihrt entweder zu direkten Erlosen oder vermeidet anderweitige Entsorgungskosten; sie tragt also positiv zum Deckungsbeitrag beL Je eingesetzter Schadstoffeinheit RI wird da­her ein (Opportunitats-)Erlos in Hohe von PI zum Ansatz gebracht. Die Kosten dieser UmweltschutzmaBnahmen werden indirekt fiber ihren Verbrauch an varia­bIen Produktionsfaktoren erfaBt. Das so1chermaBen erweiterte lineare Programm zur Produktionsplanung lautet:

m n M N

max DB= LPj ·Xj - L qi·Ti - L QJ ·XJ + LPI ·RI j=1 i=nl+1 J=M1+1 1=1

I u.d.N.: La/ ·Zk ~ TiO i = nl + 1, ... ,n

k=1

I

Lcj ·Zk ~ XJ J = 1, ... ,M1

k=1

I

La/ ·Zk -ri = 0 i = 1, ... ,nl k=1

I

Lb/ ·Zk -Xj =0 j=l, ... ,m k=1

I

Ld ·Zk -XJ =0 J= Ml +l, ... ,M k=1

I

Ld; ·Zk -RI =0 I=l, ... ,N k=1

Zk ~O k = 1, ... ,1

Page 130: Produktionstheorie ||

118 2. Ertragsgesetzliche Produktionsfunktionen

Gegenuber dem vorhergehenden Modell ist hier die Zielfunktion urn die Kosten bzw. die Erlosbeitrage der Umweltgtiter erweitert; weiter sind Restriktionen fUr die Emissionsbesehrankungen sowie Definitionsgleichungen fUr die Mengen an emittierten bzw. eingesetzten Sehadstoffen hinzugefUgt worden.

Aueh fur dieses erweiterte lineare Programm gilt das Preistheorem, d.h. die den Umweltrestriktionen zugeordneten Dualvariablen lassen sich analog zu denen der Faktorrestriktionen interpretieren: Eine positive Dualvariable zeigt an, daB die zugehOrige Restriktion bindend bzw. der entspreehende Umweltfaktor knapp ist; ihr Wert entsprieht dem zusatzliehen Deekungsbeitrag, der sich bei Loekerung der Restriktion urn eine marginale Einheit erzielen lieBe. Wird eine vorgegebene Emissionsgrenze nieht ausgesehopft, so betragt der interne Knappheitspreis die­ses Umweltguts Null, denn dureh eine weitere Loekerung der Restriktion lieBe sich der Deekungsbeitrag nieht erhOhen; er wird vielmehr dureh Engpasse in an­deren Bereichen naeh oben besehrankt.

Wiederum zeigt sieh dieformale Analogie von herkommliehen Produktionsfakto­ren, die in den ProduktionsprozeB eingehen, und den bei der Produktion als Kup­pelprodukte entstehenden Sehadstoffen: Beide Guterarten sind dureh eine Men­genvorgabe naeh oben besehrankt, das deekungsbeitragsmaximale Produktions­programm muB im Rahmen dieser Restriktionen bestimmt werden.

Falls eine Loekerung der Restriktionen moglieh ist, wird dies in der Regel Kosten verursaehen, sei es dureh die Ansehaffung neuer Betriebsmittel, dureh die die Kapazitaten erhoht werden, oder dureh die Zahlung einer Abgabe bei Uber­sehreiten von Emissionsgrenzwerten. Die der Restriktion zugeordnete Dualvaria­ble gibt jeweils dartiber Auskunft, ob eine so1che MaBnahme lohnend ist; dies ist nur dann der Fall, wenn der zusatzlieh erzielbare Deekungsbeitrag die Kosten ubersteigt.

Bei der parametrischen Variation einer Emissionsgrenze ergibt sich aus den zu­vor eingefUhrten Eigensehaften der Losung parametriseher linearer Programme, daB der Deekungsbeitrag in Abhangigkeit yom Grenzwert konkav und sruekweise monoton steigend verlauft. Der bei einer Loekerung der Restriktion zusatzlieh erzielbare Deekungsbeitrag ist urn so geringer, je weniger bindend der Grenzwert bereits ist. Ab einem bestimmten Niveau bedeutet die Restriktion keine weitere Besehrankung der Produktionsplanung, die zugehOrige Dualvariable hat den Wert Null.

Umgekehrt folgt daraus, daB die zusatzliehen Kosten bei der Verseharfung eines Grenzwerts urn so hoher sind, je strenger dieser bereits angesetzt war. Eine ge-

Page 131: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 119

samtwirtschaftlich optirnale Ressourcenallokation laBt sich daher am ehesten er­reichen, wenn urnweltpolitische Grenzwerte vorrangig in den Bereichen gesetzt oder verschiirft werden, in denen die Untemehrnen mit relativ geringen Grenzko­sten relativ hohe Schadstoffreduktionen erreichen konnen.

Ein Unterscbied zwischen Faktorbestanden und Emissionsgrenzen besteht jedoch in der Interpretation der Schlupfvariablen, die anzeigen, in welchern Umfang eine Restriktion nicht ausgeschOpft wird: Positive Schlupfvariablen bedeuten formal die Verschwendung eines Nutzungspotentials. Wahrend dies bei Faktorbe­standen negativ zu beurteilen ist, da fUr die Bereitstellung auch der nicht genutz­ten Kapazitiiten in der Vergangenbeit Kosten angefallen sind, also eine auch ge­samtwirtschaftlich suboptirnale Ressourcenallokation vorliegt, bedeutet das frei­willige Unterschreiten von Emissionsgrenzen eine geringere Urnweltbelastung und ist daher gesamtwirtschaftlich positiv zu bewerten.

2.3.4 Beurteilung der linearen Aktivitatsanalyse

Wie die vorstehenden Ausftihrungen gezeigt haben, ist es mit Hilfe der linearen Aktivitatsanalyse rnoglich, aus wenigen Annahrnen - den Eigenschaften der Pro­portionalitat, der Additivitat und der Verschwendung sowie EffizienzUberlegun­gen - mit einfachen rnethodischen Hilfsmitteln, der linearen und parametrisch linearen Programmierung, umfassende produktionstheoretische Aussagen abzu­leiten. Die bier diskutierten Modelle lassen sich leicht urn weitere inner- und au­Berbetriebliche Sachverhalte erganzen, indern zusatzliche Variable und Restrik­tionen in die entsprechenden linearen Programme aufgenommen werden. Insbe­sondere sind folgende Erweiterungen rnoglich:

• Wahrend bislang lediglich eine vorgegebene Mindestausbringungsrnenge an­genommen wurde, kann fUr jede Produktionsvariable x j zusatzlich eine Ab­satzobergrenze eingefiihrt werden, urn dadurch beschr8.nkte Aufnahmernog­lichkeiten des Absatzmarktes abzubilden.

• Obwohl in den Modellen zur Produktionsplanung zwar rnonetare GroBen in Form von Kosten und Erlosen in der Zielfunktion beriicksichtigt werden, fin­det keine Kontrolle der damit zusammenbangenden Ein- und Auszahlungen und der daraus resultierenden Liquiditat statt. Die Einftihrung von Finanzie­rungsentscheidungen und -beschriinkungen stellt eine zusatzliche Erweite­rungsrnoglichkeit dar, durch die der Realitiitsgrad der Modelle ansteigt.

Page 132: Produktionstheorie ||

120 2. Ertragsgesetzliche Produktionsfunktionen

• Auch andere von auBen auf das Untemehmen einwirkende Beschrankungen wie Produktionsge- und -verbote oder behordliche Auflagen konnen in Fonn von zusatzlichen Restriktionen berocksichtigt werden.

Tatsachlich lassen sich fast aIle fUr das Untemehmen relevanten SachverhaIte mit Hilfe der linearen Programmierung darstellen, so daB die lineare AktivitatsanaIy­se eine realitatsgetreue Abbildung des betrieblichen Produktionsgeschehens lie­fern kann. Dennoch wurde schon froh eine Reihe von Kritikpunkten gegen diese Art der Modellierung erhoben (vgl. z.B. LABMANN [1958], S. 183 ff.) , die bis heute nicht vollstandig ausgeraumt werden konnten:

• Die Gilte der mit einem solchen linearen Planungsmodell ermittelten Ergebnis­se hangt wesentlich von der Qualitat der Eingabedaten und der korrekten Spe­zifizierung und Abbildung der tatsachlichen Zusammenhange abo Dies ist je­doch ein Einwand, der sich nicht auf die lineare Aktivitatsanalyse beschrlinkt, sondem filr jegliche Modellierung betrieblicher SachverhaIte gilt. Mit Hilfe von SensitivitatsanaIysen laBt sich feststellen, bei welchen Parametem die Lo­sung besonders sensibel auf Werteschwankungen reagiert; fUr diese Daten ist dann eine groBere Exaktheit bei der Ermittlung erforderlich. Sind fUr einzelne Parameter stochastische Schwankungen in fUr die Losung relevantem Umfang zu erwarten, so lassen sich Modelle der stochastischen linearen Programmie­rung anwenden.

• Strenggenommen ist die lineare Aktivitatsanalyse nur auf solche SachverhaIte und Zusammenhange anwendbar, die tatsachlich linear verlaufen. Die betrieb­liche ReaIitat ist jedoch vielfach von nichtlinearen Verlaufen oder Ganzzahlig­keitsbedingungen gekennzeichnet. Sobald der Bereich der rein linearen Pro­grammierung verlassen wird, steigt nicht nur der Rechenaufwand erheblich bzw. aufgrund der Komplexitatstheorie sogar bis zur faktischen UnlOsbarkeit an, sondem es gehen dariiber hinaus eine Reihe von wichtigen Eigenschaften verloren, z.B. die Interpretation von Dualvariablen und die darauf beruhenden Preistheoreme. Wahrend sich Nichtlinearitliten zumindest fUr den relevanten Bereich haufig zufriedenstellend linear approximieren lassen, wird bei der Be­rocksichtigung von Ganzzahligkeiten, die aufgrund unteilbarer Einheiten von Faktoreinsatz- oder Ausbringungsmengen recht haufig auftreten, ein gemischt­ganzzahliges Programm erforderlich.

• Da mit zunehmender Anzahl von Produktionsprozessen der Modellumfang und der Rechenaufwand erheblich ansteigen, ist die lineare AktivitlitsanaIyse notwendigerweise auf eine ilberschaubare, endliche Anzahl von Prozessen be-

Page 133: Produktionstheorie ||

2.3 Die lineare Aktivitiitsanalyse 121

schrankt. Damit Uillt sich die in der RealiUit durchaus relevante Moglichkeit einer kontinuierlichen Variation des Prozej3niveaus jedoch nur unzureichend erfassen. Diese wird erst in den im folgenden Kapitel behandelten betriebs­wirtschaftlichen Produktionsfunktionen beriicksichtigt.

• Ein weiteres Problem stellt sich, wenn die Modellierung nicht vollstiindig er­folgt ist, da in diesem Fall die Einsatzvoraussetzungen der linearen Aktivillits­analyse verletzt sind. Insbesondere die - bewuBte oder unbewuBte - Nichtbe­riicksichtigung von Einsatzfaktoren kann dazu fuhren, daB diese ab einem ge­wissen Niveau zum EngpaB werden und damit die Ausbringungsmenge be­schranken. Die Produktionsfunktion bei totaler Faktorvariation der explizit er­faBten Produktionsfaktoren verliiuft dann nicht mehr linear, sondem konkav; denn tatsiichlich findet eine partielle Faktorvariation statt.

Da die lineare Aktivitiitsanalyse hier im Zusammenbang mit den ertragsgesetzli­chen Produktionsfunktionen behandelt wird, ist abschlieBend ihr Verhiiltnis zu der klassischen bzw. neoklassischen Produktionsfunktion zu untersuchen.

Die lineare Aktivitiitsanalyse ist der klassischen und neoklassischen Produktions­theorie insofem uberlegen, als sie ihre Erkenntnisse nicht auf postulierten Eigen­schaften aufbaut, sondem aus wenigen einfachen, unmittelbar einleuchtenden Annahmen ableitet. Aufgrund der mit Hilfe von Input- und Outputkoeffizienten beschriebenen Produktionsprozesse ist sie starker technologisch fundiert und da­mit eher geeignet, praktische Phiinomene zu erfassen und zu erklaren. Wiihrend die (Neo-)Klassik sich auf den Einproduktfall beschrankt und globale Aussagen fiir den Gesamtbetrieb trifft, ist es bei der Aktivitiitsanalyse moglich, sowohl eine Erweiterung auf den Mehrproduktfall als auch eine explizite Beschreibung von betrieblichen Teilbereichen vorzunehmen.

Auf den verschiedenen Betrachtungsebenen lassen sich mittels der linearen Akti­vitiitsanalyse anniihemd neoklassische Kurvenverliiufe herleiten und verschiedene Aussagen der Neoklassik bestiitigen. Der wesentliche Unterschied in den Ergeb­nissen besteht in den Eigenschaften und im Aussehen der Produktionsfunktion und der aus ihr abgeleiteten Funktionen:

Wiihrend die Neoklassik von einer zweimal stetig differenzierbaren Produktions­funktion ausgeht und dadurch zu stetig differenzierbaren und streng konvexen bzw. konkaven Verliiufen der Isoquante bzw. der Produktionsfunktion bei parti­eller Faktorvariation gelangt, erhiilt man in der linearen Aktivitiitsanalyse mit Hil­fe der parametrischen linearen Programmierung qualitativ iihnliche Verliiufe. Da jede Technologie uber endlich viele Produktionsprozesse verfiigt, sind die Funk-

Page 134: Produktionstheorie ||

122 2. Ertragsgesetzliche Produktionsfunktionen

tionen stiickweise linear; jeder Knickpunkt entspricht einem ProzeBwechsel, auf jedem Teilstiick wird mit Konvexkombinationen der beiden begrenzenden reinen Prozesse produziert.

Mit Hilfe der linearen Aktivitiitsanalyse wurde weiter die Aussage hergeleitet, daB auch in einer durch limitationale Prozesse bestimmten Technologie eine Sub­stitution von Produktionsfaktoren auftreten kann, die Faktorsubstitution wird je­doch durch die Substitution von Produktionsprozessen mit unterschiedlichen Produktionskoeffizienten erkHirt.

Die neoklassischen KurvenverUiufe werden durch die AktiviUitsanalyse urn so besser approximiert, je mehr effiziente Produktionsprozesse zur Verftigung ste­hen und je gleichmaBiger diese sich tiber das Substitutionsgebiet verteilen. Daher kann umgekehrt eine neoklassische Produktionsfunktion als Niiherung zur Be­schreibung und Analyse einer linearen Technologie mit sehr vielen Produktions­prozessen eingesetzt werden. Es gilt der folgende Satz (vgl. KISTNER [1993a], S. 111 f.):

In einer linearen Technologie, bei der zu jeder echten ProzeBkombina­tion ein reiner ProduktionsprozeB existiert, der diese dominiert, ist die Produktionsfunktion neoklassisch.

Dies laBt sich beweisen, indem man zeigt, daB diese auf unendlich vielen Pro­duktionsprozessen aufgebaute Produktionsfunktion die neoklassischen Eigen­schaften aufweist:

(1) Konstante Skalenertriige

Wie in Abschnitt 2.3.2.1 gezeigt wurde, ist die Produktionsfunktion zu einer linearen Technologie bei totaler Faktorvariation linear-homogen, d.h. die Ei­genschaft konstanter Skalenertrage ist erfiillt.

(2) Abnehmende Grenzrate der Substitution

Damit eine abnehmende Grenzrate der Substitution vorliegt, muB die Iso­quante streng konvex sein. Das bedeutet, daB die Konvexkombination zweier Punkte der Isoquante immer oberhalb der Kurve liegt. Dies ist aufgrund der Aussage des Satzes gewiihrleistet, da zu jeder echten ProzeBkombination ein Punkt der Funktion existiert, der diese dominiert.

(3) Positive, abnehmende Grenzertriige

Da die Produktionsfunktion bei partieller Faktorvariation einen steigenden Verlauf hat, sind die Grenzertrage positiv. Abnehmende Grenzertrage liegen

Page 135: Produktionstheorie ||

2.3 Die lineare Aktivitatsanalyse 123

vor, wenn diese Produktionsfunktion streng konkav verHiuft. Dies kann durch ahnliche Uberlegungen, wie sie bei der Isoquante angestellt wurden, gezeigt werden.

Zusammenfassend UiBt sich feststellen, daB die line are AktivWitsanalyse zwar aufgrund ihrer Verlaufe zu den ertragsgesetzlichen Produktionsfunktionen zu zahlen ist, jedoch aufgrund ihrer Vorgehensweise einen wesentlich groBeren Realitatsbezug und Erklarungswert aufweist als die klassische und die neoklassi­sche Produktionsfunktion. Dies wird nicht zuletzt durch zahlreiche Anwendungen von linearen Planungsmodellen im Produktionsbereich belegt.

Page 136: Produktionstheorie ||

125

3. Betriebswirtschaftliche Produktionsfunktionen Die zuvor behandelten ertragsgesetzlichen Produktionsfunktionen stellen zwar einen innerhalb ihrer Priimissen zusammenhiingenden ErkHirungsansatz fOr pro­duktionstheoretische Zusammenhiinge dar, wobei sich mit Hilfe der linearen Ak­tivitiitsanalyse bereits zahlreiche Aspekte der Realitat tiberzeugend darstellen las­sen; sie wei sen jedoch insgesamt fOr betriebswirtschaftlich orientierte Betrach­tungen eine Reihe von Schwachpunkten auf (vgl. zur Kritik an ertragsgesetzli­chen Produktionsfunktionen z.B. GUTENBERG [1983], S. 318 ff.; KlLGER [1958], S. 48 ff.; LABMANN [1958], S. 110 ff.):

• Urn eine Produktion mit der Minimalkostenkombination zu ermoglichen, wird unterstellt, daB die Einsatzrnengen samtlicher Produktionsfaktoren frei gewiihlt werden konnen. Tatsachlich verftigt der Betrieb regelmiiBig - zumindest bei einigen Produktionsfaktoren - tiber bestimmte Bestiinde, auf deren Einsatz zwar (teilweise) verzichtet werden kann, deren Kosten jedoch, insbesondere in Form von Kapitalbindungskosten, nach wie vor anfallen, so daB sich die Mi­nirnalkostenkornbination faktisch nicht erreichen liiBt.

• Der ertragsgesetzliche Verlauf beruht auf der weitgehenden Substituierbarkeit samtlicher Produktionsfaktoren, die in der klassischen und neoklassischen Produktionstheorie postuliert und in der linearen ~tivitiitsanalyse durch die ProzeBsubstitution erkliirt wird. Substitutionalitat stellt jedoch ftir die industri­elle Produktion eher den Ausnahmefall dar; hier sind vielrnehr weitgehend li­mitationale Zusammenhiinge vorherrschend.

• Die gleichartige Behandlung samtlicher Produktionsfaktoren ist nicht sachge­recht, es ist vielrnehr explizit zwischen dern Einsatz von Verbrauchsfaktoren und der Nutzung bzw. Leistungsabgabe von Potentialfaktoren zu unterschei­den.

• Weiter wird in der Produktionsfunktion ein direkter Zusammenhang von Fak­toreinsatzrnengen und der damit erzielbaren Ausbringungsrnenge unterstellt, wobei die naturwissenschaftlichen GesetzrniiBigkeiten, auf denen die Produk­tion beruht, und die technischen Betriebsbedingungen, von denen die Ergie­bigkeit des Faktoreinsatzes wesentlich abhiingt, nur unzureichend berucksich­tigt werden.

Aus diesen Kritikpunkten an den ertragsgesetzlichen Produktionsfunktionen her­aus sind seit Anfang der ftinfziger Jahre produktionstheoretische Ansatze entwik­kelt worden, die die aus betriebswirtschaftlicher Sicht relevanten Sachverhalte -

Page 137: Produktionstheorie ||

126 3. Betriebswirtschaftliche Produktionsfunktionen

insbesondere die technologischen Bedingungen, unter denen die betriebliche Pro­duktion stattfindet - starker beriicksichtigen (vgl. hierzu FORSTNER [1962], S. 264). Ein Ausgangspunkt dieser Entwicklung ist die 1951 von ERICH Gu­TENBERG vorgestellte Theorie der Anpassungsformen, die explizit die Betriebs­mittel als Trager des betrieblichen Leistungspotentials in den Mittelpunkt der Betrachtungen stellt. Sie wird als GUTENBERG-Produktionsfunktion in Abschnitt 3.1 behandelt.

Mit der in Abschnitt 3.2 dargestellten HEINEN-Produktionsfunktion erfolgt eine Weiterentwicklung und Verfeinerung des GUTENBERG'schen Ansatzes. Der Pro­duktionsprozeB wird erklli.rt als eine Abfolge von Elementarkombinationen, fiir die jeweils unterschiedliche Produktivitatsbeziehungen gelten. Die in Abschnitt 3.3 diskutierte betriebswirtschaftliche Input/Output-Analyse stellt eine Weiter­entwicklung der in der Volkswirtschaftslehre entwickelten InputiOutput-Theorie dar, die die innerhalb eines Betriebes relevanten Lieferbeziehungen abbildet.

Auf die fast zeitgleich mit der GUTENBERG-Produktionsfunktion im amerikani­schen Schrifttum entwickelten Engineering Production Functions, die die Ent­scheidung tiber die Ausgestaltung von Betriebsmitteln in der Design-Phase an­hand von naturwissenschaftlich-technischen GesetzmaBigkeiten treffen, auf de­nen auch die Formulierung der okonomischen Austauschbeziehungen aufbaut, wird hier nicht eingegangen (vgl. hierzu CHENERY [1949] sowie die Darstellun­gen bei FANDEL [1996], S. 127 ff. und KISTNER [1993a], S. 126 ff.).

3.1 Die GUTENBERG-Produktionsfunktion Die GUTENBERG-Produktionsfunktion analysiert die Abhangigkeit der Faktorein­satz- und Ausbringungsmengen an Werkstoffen von der Fahrweise der Betriebs­mittel, die sich durch die zeitliche, quantitative und intensitatsmaBige Anpassung steuem laBt. Da bei der betriebswirtschaftlich orientierten Betrachtung Gu­TENBERGs die mit der Produktion verbundenen Kosten im Mittelpunkt stehen, wird im AnschluB an die in Abschnitt 3.1.1 dargestellten Grundlagen des Ansat­zes in Abschnitt 3.1.2 ein Uberblick tiber die mit den verschiedenen reinen An­passungsformen verbundenen Kostenverlaufe gegeben. In Abschnitt 3.1.3 werden die Kostenverlaufe bei gemischten Anpassungsformen und die daraus resultie­renden Wahlprobleme behandelt. In Abschnitt 3.1.4 wird gezeigt, wie sich exter­ne Restriktionen, insbesondere im Bereich des Umweltschutzes, auf das Ent­scheidungsfeld des Untemehmens auswirken; in Abschnitt 3.1.5 wird schlieBlich eine Beurteilung des Ansatzes vorgenommen.

Page 138: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion

3.1.1 Grundbegriffe

3.1.1.1 Ausgangspunkt

127

Ausgangspunkt der produktionstheoretischen Uberlegungen GUTENBERGs sind die zuvor angefiihrten Kritikpunkte an den ertragsgesetzlichen Produktionsfunk­tionen. FUr eine sachgerechte Beschreibung der industriellen Produktionsbedin­gungen haIt er zunachst eine explizite Unterscheidung zwischen den Werkstoffen, die direkt in die Produkte eingehen, sowie den Betriebsmitteln, die bei der Pro­duktion lediglich genutzt werden und durch deren im Zeitablauf erfolgende Lei­stungsabgabe die Leistungserstellung erst ermoglicht wird, fUr erforderlich. Der Bestand der im Untemehmen vorhandenen Betriebsmittel und auch der fur ihre Bedienung erforderlichen Arbeitskrafte wird wahrend der betrachteten kurzfristi­gen Zeitspanne als konstant angesehen, variabel ist lediglich ihre Leistungsabga­be pro Zeiteinheit. Weiter wird zwischen den Roh- und Hilfsstoffen, deren Ein­satzmengen sich im wesentlichen direkt proportional zu der Ausbringungsmenge entwickeln und zueinander in limitationalen VerhaItnissen stehen, und den Be­triebsstoffen unterschieden, deren Verbrauchsmengen nicht nur durch die Aus­bringungsmenge, sondem auch durch die Fahrweise der Betriebsmittel beeinfluBt werden.

Damit treten die Betriebsmittel als Trager der technischen Produktionsbedingun­gen in den Mittelpunkt der Betrachtungen. Wahrend ihr Bestand innerhalb des betrachteten kurzfristigen Zeitraums als konstant angesehen wird, kann ihre Lei­stungsabgabe innerhalb gewisser Grenzen variiert werden, urn so eine Anpassung des Betriebes an schwankende Leistungsanforderungen - GUTENBERG verwendet hierfUr den Begriff ,,Beschiiftigungsschwankungen" - zu ermoglichen. Bedingt durch die unterschiedliche Fahrweise der Betriebsmittel konnen mit einer be­stimmten Kombination von Faktoreinsatzmengen mehrere Ausbringungsmengen verbunden sein, ohne gegen das Effizienzpostulat als Grundbedingung wirt­schaftlichen Handelns zu verstoBen. An die Stelle einer unmittelbaren Beziehung von Faktoreinsatz- und Ausbringungsmengen tritt eine technisch determinierte mittelbare Beziehung, die die spezifischen Eigenschaften und die Einsatzbedin­gungen der Betriebsmittel explizit berucksichtigt.

Der Betriebsmittelbestand erfahrt zwar durch die Leistungsabgabe eine standige Minderung seines Nutzungspotentials, die bei der Bewertung des Faktoreinsatzes angemessen berucksichtigt werden moB, kurzfristig wird er jedoch als konstant angesehen. Jedes Aggregat laBt sich eindeutig durch seine individuellen techni­schen Eigenschaften charakterisieren. Bezeichnet man die KenngroBen der ein-

Page 139: Produktionstheorie ||

128 3. Betriebswirtschaftliche Produktionsfunktionen

zelnen Eigenschaftsdimensionen mit Zh (h = 1, ... , H), so gibt der Vektor ~ die als z-Situation bezeichnete gegebene technische Ausstattung des Betriebsmittels an (vgl. GUTENBERG [1983], S. 329 ff.). Z.B. laBt sich ein Motor durch die An­zahl der Ventile (Zl)' seinen Hubraum (Z2), die maximale Kompression (Z3) und Betriebstemperatur (Z4 ), die benotigte Treibstoffart (zs) und eine Reihe weiterer, durch seine Konstruktion eindeutig festgelegter Merkmale beschreiben, die gleichzeitig seine mogliche Leistungsabgabe bestimmen. Filr einen Hochofen sind u.a. das Fassungsvermogen, die Innenverkleidung und die Art der Energie­zufuhr relevant, fiir eine Bearbeitungsmaschine z.B. die Art der Kilhlung, die mogliche Schnittbreite und Vorschubgeschwindigkeit sowie die Anzahl und das Material der Werkzeuge, mit denen sie bestiickt ist. Lassen sich im Einzelfall sol­che technischen Eigenschaften im nachhinein andem, so erfolgt ein Ubergang zu einer neuen Technologie mit einer anderen z-Situation. Dies gilt ebenso fiir die nachtragliche Umriistung eines Aggregats mit additiven UmweltschutzmajJnah­men, z.B. filr die Nachriistung eines Motors mit einem Abgasriickhaltesystem.

In Abhangigkeit von der z-Situation ergeben sich die moglichen Fahrweisen eines Betriebsmittels und damit seine Leistungsabgabe pro Zeiteinheit. So laBt die technische Konstruktion eines Motors nur bestimmte Drehzahlen zu, die ihrer­seits zu bestimmten Leistungen fiihren. Die Ausbringungsmenge eines Hochofens hangt von der gewahlten Kombination von Druck und Temperatur sowie der Be­schickung ab; die Leistung einer Bearbeitungsmaschine wird nicht nur von der Drehzahl, sondem auch von dem ausgeilbten Druck und der Breite des ausge­wahlten Werkzeugs bestimmt. Hierbei ist zu unterscheiden zwischen der techni­schen Leistung und der betriebswirtschaftlich relevanten Arbeitsleistung. Bei ge­gebener z-Situation und Konstanz samtlicher technischer EinfluBgroBen sowie bei Vemachlassigung weiterer extemer Faktoren, die die Leistungsabgabe beein­fIussen konnen, hangt die Arbeitsleistung direkt von der Geschwindigkeit ab, mit der der ProduktionsprozeB ablauft (vgl. GUTENBERG [1983], S. 331).

Die am einzelnen Betriebsmittel erforderlichen Einsatzmengen der Verbrauchs­faktoren weisen weitgehend limitationale Beziehungen auf: Eine groBere Aus­bringungsmenge laBt sich nur dann hervorbringen, wenn von allen beteiligten Faktorarten gleichzeitig mehr eingesetzt wird; eine partielle Faktorvariation, d.h. die Erhohung der Einsatzmenge eines einzigen oder einer Gruppe von Ver­brauchsfaktoren bewirkt hingegen keine Leistungssteigerung, da sich dann die konstant gehaltenen Faktormengen als EngpaB erweisen. Jedoch ist die Bereit­stellung weiterer Mengen samtlicher Verbrauchsfaktoren in den erforderlichen MengenverhaItnissen lediglich eine Grundvoraussetzung fiir eine groBere Aus-

Page 140: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 129

bringungsmenge, zusatzlich ist eine Anpassung der Leistungsabgabe der Potenti­alfaktoren erforderlich.

Die Aussagen GUTENBERGS gelten im wesentlichen fUr die Fertigungsindustrie, auf prozeBtechnische Produktionszusammenhange wird nur am Rande eingegan­gen. In den folgenden Ausfiihrungen wird zunachst davon ausgegangen, daB die Fertigung eines einzigen Produkts in einer Produktionsstelle betrachtet wird. Unter einer Produktionsstelle ist ein raumlich oder organisatorisch abgegrenzter Teilbereich des Betriebs zu verstehen, in dem samtliche fUr die Herstellung des Produkts vorgesehenen Betriebsmittel zusammengefaBt sind und in dem aus­schlieBlich dieses Produkt hergestellt wird.

3.1.1.2 Anpassungsformen

Zur Reaktion auf Beschaftigungsschwankungen stehen dem Betrieb folgende Anpassungsformen zur Verfiigung:

(1) Zeitliche Anpassung

Die zeitliche Anpassung bedeutet eine Variation der Laufzeit t der Betriebs­mittel. Sie ist innerhalb der technisch oder (tarif-)vertraglich fixierten Gren­zen einer Mindestlaufzeit tmin und einer Hochstlaufzeit tmax zulassig.

tE[tmin,tmaxl

Die Mindestlaufzeit kann durchaus - soweit nicht prozeBtechnische Erforder­nisse dem entgegenstehen - den Wert Null annehmen. Die Hochstlaufzeit wird durch das Minimum aus vereinbarter Arbeitszeit der Arbeitnehmer und technisch zulassiger Beanspruchung der Aggregate determiniert, wobei sich in der Regel die Arbeitszeit als EngpaB erweist. In diesem Fall laBt sich die Laufzeit in gewissen Grenzen durch den Einsatz von Uberstunden erhohen. Ein Unterschreiten der Hochstlaufzeit bedeutet eine Verschwendung des nicht genutzten Teils der Kapazitat.

(2) Quantitative Anpassung

Bei der quantitativen Anpassung wird die Anzahl m der fUr die Erzeugung des Produkts eingesetzten Betriebsmittel entsprechend den Leistungsanforde­rungen variiert. Der zulassige Bereich der quantitativen Anpassung liegt so­mit zwischen Null und der Zahl M der insgesamt vorhandenen, fUr den be­trachteten Produktionszweck geeigneten Maschinen, wobei wegen der Un­teilbarkeit von Betriebsmitteln nur ganzzahlige Werte in Betracht kommen:

Page 141: Produktionstheorie ||

130 3. Betriebswirtschaftliche Produktionsfunktionen

me {O,1,2, ... , M}

Soweit die vorhandenen Betriebsmittel nicht vollstiindig in der Produktion eingesetzt werden, liegt eine Verschwendung der nicht genutzten Kapazitat vor. Bei der quantitativen Anpassung ist zu beachten, daB sie sich lediglich auf den Einsatz bereits vorhandener und nicht auf die Anschaffung neuer Betriebsmittel bezieht; fUr letzteres ware eine Investitionsentscheidung erfor­derlich.l

(3) Intensitiitsmiij3ige Anpassung

Bei der intensitatsmaBigen Anpassung wird die Intensitat bzw. die Produk:­tionsgeschwindigkeit d der Betriebsmittel variiert. Je schneller eine Maschine arbeitet, desto mehr Produkteinheiten kann sie in einer bestimmten Zeit bear­beiten. Die Intensitat wird daher gemessen als Leistungsabgabe pro Zeitein­heit:

d=X t

In der Regel existiert fur jedes Betriebsmittel eine Minimalintensitat d min ,

unterhalb derer sein Einsatz nicht moglich ist, und eine Maximalintensitat dmax , die aus technischen Grunden nicht uberschritten werden darf. Es gilt somit fUr den zulassigen Bereich:

dE [dmin , dmax 1 Falls der Wechsel zwischen verschiedenen Intensitatsniveaus kontinuierlich moglich ist, kann d jeden Wert aus diesem Intervall annehmen, bei vorgege­benen Intensitatsstufen sind nur ausgewiihlte Werte zulassig.

1m Rahmen der Zulassigkeit der einzelnen Anpassungsformen laBt sich eine be­stimmte Ausbringungsmenge durch unterschiedliche Kombinationen von zeitli­cher, quantitativer und intensitatsmaBiger Anpassung erreichen:

x=t·m·d

Diese als GUTENBERG-Produktionsfunktion bezeichnete Beziehung bringt die Abhangigkeit def Ausbringungsmenge yom kombinierten Einsatz def Anpas-

1 Zwar ziihlt GUTENBERG selbst auch die Anschaffung bzw. den Abbau von Aggregaten zur quantitativen Anpassung, doch hat sich in der Literatur die Ansicht durchgesetzt, daB dabei die in der z-Situation enthaltene Annahme eines gleichbleibenden Betriebsmittelbestands verletzt wird, vgl. JACOB [1962], S. 210.

Page 142: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 131

sungsformen zum Ausdruck. Dabei besteht offensichtlich eine Substitutionalitiit der Anpassungsformen; so lassen sich z.B. Einschrankungen bei der zuHissigen Arbeitszeit aufgrund von tarifvertraglich vereinbarter Arbeitszeitverlctirzung durch eine hOhere Produktionsgeschwindigkeit kompensieren. In Abbildung 44 ist in einem Zeit-Leistungs-Diagramm dargestellt, wie an einem einzelnen Be­triebsmittel unterschiedliche Kombinationen von Laufzeit und Produktionsge­schwindigkeit innerhalb der zuHissigen Bereiche zu einer bestimmten Ausbrin­gungsmenge x = x fuhren. Aufgrund der substitutionalen Beziehung von Lauf­zeit und Produktionsgeschwindigkeit ergibt sich ein isoquantenformiger Verlauf.

d d nun d max

Abb. 44: Substitution von Anpassungsformen

3.1.1.3 Verbrauchsfunktion und Faktoreinsatzfunktion

Da eine bestimmte Ausbringungsmenge mit unterschiedlichen Fahrweisen der Betriebsmittel erreicht werden kann, hlingt offensichtlich der zu ihrer Erzeugung erforderliche Faktoreinsatz nicht nur von der Ausbringungsmenge selbst, sondem auch von der gewahlten Kombination von Anpassungsformen abo Diese Abhlin­gigkeit wird durch Verbrauchsfunktionen und Faktoreinsatzfunktionen beschrie­ben.

Die Verbrauchsfunktion gibt an, wie der je Ausbringungseinheit erforderliche Faktoreinsatz eines jeden Verbrauchsfaktors i = 1, ... ,n von der Fahrweise der Betriebsmittel abhlingt:

ai = ai(t,m,d) i = 1, ... ,n

Page 143: Produktionstheorie ||

132 3. Betriebswirtschaftliche Produktionsfunktionen

Es handelt sich bei dieser Funktion offensichtlich urn eine Verallgemeinerung des Produktionskoeffizienten, der nicht mehr konstant, sondem von dem AusmaB der Nutzung der Anpassungsformen abhiingig ist. Jede Veriinderung des Intensitats­niveaus bewirkt einen Wechsel zu einem neuen ProduktionsprozeB mit anderen Produktionskoeffizienten. Die HaupteinfluBgroBe ist dabei die Produktionsge­schwindigkeit d:

ai = ai(d) i = l, ... ,n

Wahrend sich sowohl bei isolierter zeitlicher als auch bei isolierter quantitativer Anpassung konstante Produktionskoeffizienten ergeben, fiihrt die intensitatsma­Bige Anpassung im Normalfall zu einer konvexen, u-formigen Verbrauchsfunk­tion, wie sie in Abbildung 45 dargestellt ist (vgl. GUTENBERG [1983], S. 333 f.).

d dmin dmax

Abb. 45: Verbrauchsfunktion

Eine u-formige Verbrauchsfunktion weist ein eindeutiges Minimum auf, d.h. fUr jeden Verbrauchsfaktor i, fUr den eine solche Verbrauchsfunktion gilt, existiert eine Produktionsgeschwindigkeit d *, bei der der Faktorverbrauch je Produktein­heit minimal ist.

Wahrend die Verbrauchsfunktion den Faktoreinsatz je Produkteinheit angibt, be­schreibt die Faktoreinsatifunktion den fUr eine bestimmte Ausbringungsmenge insgesamt erforderlichen Faktoreinsatz der einzelnen Verbrauchsfaktoren. Dieser ergibt sich, indem man den je Produkteinheit erforderlichen Faktoreinsatz mit der Anzahl der zu erzeugenden Produkteinheiten multipliziert:

Page 144: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 133

i = 1, ... ,n

Stellt man auch hierbei auf die Produktionsgeschwindigkeit als wesentliche Ein­fluBgroBe ab, so erhaIt man folgende Faktoreinsatzfunktion:

'i(x)=ai(d)·x i=1, ... ,n

Bei Beriicksichtigung der GUTENBERG-Produktionsfunktion ergibt sich:

'i(d) = ai(d)· t ·m·d i = 1, ... ,n

Die Faktoreinsatzfunktion zu einer u-formigen Verbrauchsfunktion hat einen s­formigen Verlauf, wie er in Abbildung 46 dargestellt ist.

x

Abb. 46: Faktoreinsatzfunktion

Der an einem bestimmten Betriebsmittel erforderliche Faktoreinsatz in Abhiin­gigkeit von der Ausbringungsmenge und der Fahrweise des Aggregats laBt sich durch ein System von Faktoreinsatifunktionen modellieren. Diese bilden den Kern des GUlENBERG'schen Ansatzes. Bei Aggregation fiber alle ffir die Produk­tion benutzten Betriebsmittel k = 1, ... ,1 erhaIt man den insgesamt erforderlichen Faktoreinsatz ffir jeden Verbrauchsfaktor i:

'ik (x) = af (d)· x i = 1, ... ,n; k = 1, ... ,1

I I

'i(x) = ~//(x)= 'Laf(d).x i = 1, ... ,n k=l k=l

Die hier hergeleiteten Verbrauchs- und Faktoreinsatzfunktionen gelten jeweils fUr eine bestimmte z-Situation. Bei einer Anderung des technischen Datenkranzes der

Page 145: Produktionstheorie ||

134 3. Betriebswirtschaftliche Produktionsfunktionen

Betriebsmittel erfolgt ein Wechsel zu neuen Verbrauchs- und Faktoreinsatzfunk­tionen.

3.1.1.4 Technologiemenge der GUTENBERG-Produktionsfunktion

Da bei der GUTENBERG-Produktionsfunktion die Fahrweise der Betriebsmittel im Mittelpunkt der Betrachtungen steht und sich sowohl die Einsatzmengen der Pro­duktionsfaktoren aIs auch die Ausbringungsmenge in Abhangigkeit von der ge­wahlten Kombination von Anpassungsformen ergeben, ist es sinnvoll, die zuge­hOrige Technologiemenge aIs Menge der zuUissigen Aktivitaten in Abhangigkeit von den Parametern t, m und d zu definieren (vgl. DINKELBACH I ROSENBERG [1994], S. 137):

Ii =ai(d).t.m.d'5.lio

x=t·m·d~xo

tmin '5. t '5. tmax mE [O,I,2, ... ,M]

dmin '5. d '5. dmax

i = 1, ... ,n

Dabei gibt die erste Zeile potentielle Einschrankungen der Produktionsmoglich­keiten durch die beschrankte Verffigbarkeit von Werkstoffen an. In der zweiten Zeile wird gefordert, daB eine vorgegebene Mindestausbringungsmenge herge­stellt wird. Die nachfolgenden Zeilen geben die in Abschnitt 3.1.1.2 definierten zulassigen Bereiche der einzelnen Anpassungsformen an. Sind weder Faktorein­satzmengenbeschrankungen noch eine Mindestausbringungsmenge relevant, so fiihren aile denkbaren Fahrweisen der Betriebsmittel zu zulassigen Aktivitaten.

Diese Darstellung verdeutlicht nochmaIs, daB bei der GUTENBERG-Produktions­funktion die Beziehung zwischen Faktoreinsatz- und Ausbringungsmengen keine direkte ist, sondern indirekt fiber die Fahrweise der Betriebsmittel, d.h. fiber die Wahl der Anpassungsformen, erklart wird.

3.1.2 KostenverUiufe bei den einzelnen Anpassungsformen

In den folgenden Abschnitten wird untersucht, wie sich die Kosten der Anpas­sung der Produktion an schwankende Beschaftigungslagen in Abhangigkeit von der Nutzung der verschiedenen Anpassungsformen entwickeln. Da es sich bei der Anpassung der Produktion an Beschaftigungsschwankungen urn eine kurzfristige Entscheidung handelt, werden ausschlieBlich die variablen Kosten beeinfluBt,

Page 146: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 135

denn die Fixkosten fallen als Kosten der Betriebsbereitschaft unabhangig yom AusmaB der Produktion in der jeweiligen Periode an. Erst bei umfassenderen Entscheidungen wie z.B. Veranderungen des Produktionsprogramms oder der Betriebsmittelausstattung ist auch ein EinfluB auf die Fixkostenstruktur erkenn­bar.

Die variablen Kosten einer bestimmten Ausbringungsmenge ergeben sich durch Multiplikation der durch ihre Faktoreinsatzfunktionen beschriebenen Einsatz­mengen der Produktionsfaktoren mit ihren Preisen qi' die als bekannt vorausge­setzt werden, und Summierung fiber samtliche Faktorarten.

n n Kv(x) = L1i(X)·qi = Lai(t,m,d).x·qi

i=l i=l

Offensichtlich sind diese Kosten direkt abhangig von dem AusmaB, in dem die einzelnen AnpassungsmaBnahmen genutzt werden. In diesem Abschnitt werden zunachst die verschiedenen Anpassungsformen weitgehend isoliert betrachtet, urn die einzelnen Einflfisse auf den Kostenverlauf deutlich herauszuarbeiten; im fol­genden Abschnitt wird dann auf die Kombination von Anpassungsformen und die dabei auftretenden Auswahlprobleme eingegangen.

3.1.2.1 Zeitliche Anpassung

Bei der reinen zeitlichen Anpassung wird die Laufzeit der Maschinen und damit auch die Arbeitszeit der Arbeitskrafte isoliert variiert, d.h. sowohl die Anzahl der eingesetzten Maschinen als auch die Produktionsgeschwindigkeit werden auf dem Niveau m bzw. (j konstant gehalten. Es wird also die folgende GUTEN­

BERG-Produktionsfunktion untersucht:

x=t·m·(j

Zeitliche Anpassung bedeutet, daB eine mit dem Betriebsmittel verbundene Akti­vitat, die sich durch bestimmte Produktionskoeffizienten charakterisieren laBt, innerhalb der zulassigen Lauf- bzw. Arbeitszeit mehr oder weniger haufig ausge­ffihrt wird. Dies entspricht der Ausdehnung der Produktion entlang eines ProzefJ­strahls, d.h. neben den konstanten Produktionskoeffizienten bestehen limitatio­nale FaktoreinsatzmengenverhaItnisse.

Organisatorisch laBt sich die zeitliche Anpassung als Reaktion auf eine ruckliiufi­ge Beschiiftigung durch den Wegfall von Schichten, durch Kurzarbeit oder durch Nichtausnutzung eines Teils der zur Verffigung stehenden Arbeitszeit realisieren.

Page 147: Produktionstheorie ||

136 3. Betriebswirtschaftliche Produktionsfunktionen

Zeitliche Anpassung bei zunehmender Beschiiftigung bedeutet hingegen zunachst die vollstandige Ausnutzung der verfiigbaren Arbeitszeit und dariiber hinaus Uberstunden oder die Einrichtung von zusatzlichen Schichten. Diese MaBnahmen werden in der Reihenfolge ergriffen, in der sie den groBten Kostenriickgang bzw. den geringsten Kostenanstieg bewirken.

Wegen der auf einem ProduktionsprozeB konstanten Produktionskoeffizienten gelten fur die verschiedenen Gruppen von Produktionsfaktoren folgende Fak­toreinsatzfunktionen:

• Werkstoffe:

1j{x} = ai·x i = 1, ... ,n

Der Werkstoffeinsatz steigt bzw. fallt direkt proportional mit der Ausbrin­gungsmenge. Es wird angenommen, daB sich Werkstoffe innerhalb des be­trachteten kurzen Zeitraums in beliebigen Mengen yom Markt beziehen lassen.

• Betriebsmittel:

rM{x}=aM ·X=tM{X}~tmax

Auch die in Anspruch genommene Laufzeit der Maschinen t M {x} steht in einem konstanten Verhaltnis zu der hergestellten Ausbringungsmenge x, die durch tmax nach oben begrenzt wird. aM ist der maschinenbezogene Produk­tionskoeffizient, er gibt die je Produkteinheit benotigte Maschinenzeit an.

• Arbeitskriifte:

rA{x}=aA ·X=tA{X}~tmax

Ebenso ist die zeitliche Inanspruchnahme der Arbeitskrafte t A {x} direkt pro­portional zur Ausbringungsmenge und nach oben durch tmax begrenzt. a A als arbeitsbezogener Produktionskoeffizient gibt die je Produkteinheit erforderli­che Arbeitszeit an. Werden Arbeitskrafte unterschiedlicher Qualifikation be­notigt, so mussen diese Koeffizienten entsprechend differenziert werden.

Durch die Beschrankung der verfugbaren Lauf- bzw. Arbeitszeit auf tmax wird die herstellbare Ausbringungsmenge bei in beliebigen Mengen beschaftbaren Werkstoffen durch den Faktor determiniert, der den EngpaBsektor darstellt:

xmax = min {tmax; tmax } aM aA

Page 148: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 137

Bewertet man nun die Faktoreinsatzmengen der Werkstoffe mit ihren Marktprei­sen qi und ordnet dem Maschinen- bzw. Arbeitskrafteeinsatz die in Abhiingigkeit von der zeitlichen Inanspruchnahme anfallenden Kosten zu, so erhaIt man im Be­reich der normalen Arbeitszeit die folgende Kostenfunktion:

n K{x) = KF + ~>i{X)·qi +rM{x)·qM +rA{x)·qA

i=1

Dabei umfaBt K F die nicht entscheidungsrelevanten Fixkosten der Produktion. q M enthaIt samtliche zeitabhiingigen Maschinenkosten, die z.B. durch eine lei­stungsabhiingige Abschreibung oder eine nach der Laufzeit bemessene Wartung bestimmt sein konnen. q A bezeichnet die von der tatsachlich abgeleisteten Ar­beitszeit abhiingigen Lohnbestandteile, z.B. den Lohnsatz bei ausschlieBlich im Stundenlohn eingesetzten Arbeitskraften. Da der Ausdruck in der Klammer die mit den Faktorpreisen bewerteten Faktoreinsatzmengen je Ausbringungseinheit angibt, lliBt er sich als variable Stuckkosten der Produktion bei zeitlicher Anpas­sung interpretieren.

Wenn die Ausbringungsmenge tiber x max hinaus gesteigert werden solI, sind den Arbeitskraften Zuschlage z.B. fUr Uberstunden oder Schichtarbeit in Hohe von q1 je Zeiteinheit zu zahlen, wahrend sich die Kosten fUr Werkstoff- und Be­triebsmitteleinsatz nicht iindem. Dies wirkt sich in der Kostenfunktion als ein sruckbezogener Zuschlagssatz a A . q 1 aus, der fUr die tiber xmax hinausgehende Ausbringungsmenge zu entrichten ist:

K{x) = KF +(~ai'% +aA 'qA +aM .qM).x+aA ·q1·(x-xmax ) x> Xmax 1=1

Insgesamt ergibt sich damit der in Abbildung 47 dargestellte Kostenverlauf bei rein zeitlicher Anpassung: Beginnend auf dem Fixkostenniveau K F steigen die Kosten in Abhiingigkeit von der Ausbringungsmenge proportional an; mit Uber­schreiten der Ausbringungsmenge xmax wird der Anstieg der Funktion aufgrund des Zuschlagssatzes fUr die Arbeitskrafte steiler. Der Anstieg entspricht dem Sruckkostensatz fUr die Produktion in den beiden Bereichen.

Page 149: Produktionstheorie ||

138 3. Betriebswirtschaftliche Produktionsfunktionen

K(x)

Kp

x o X max

Abb. 47: Kostenverlauf bei rein zeitlicher Anpassung

Auch wenn sich die Produktion durch MaBnahmen der zeitlichen Anpassung durchaus noch tiber xmax hinaus ausdehnen laBt, so ist dies doch nicht beliebig moglich. Eine absolute Obergrenze bildet die Ausbringungsmenge, die sich er­gibt, wenn man das Betriebsmittel wahrend der zur Verftigung stehenden Ar­beitszeit kontinuierlich laufen laBt. Sind in diesem Zeitraum Wartungsvorgange erforderlich, so ist von dieser Ausbringungsmenge noch ein der nicht produktiv nutzbaren Zeit entsprechender Abschlag vorzunehmen.

3.1.2.2 Quantitative Anpassung

Die quantitative Anpassung als Variation der Anzahl m der in der Produktions­stelle eingesetzten Maschinen wird gewiihlt, wenn sich die Beschaftigungs­schwankungen allein mit der zeitlichen Anpassung nicht bewiiltigen lassen. Bei der zunachst betrachteten rein quantitativen Anpassung werden sowohl die Ar­beitszeit auf dem Niveau tmax als auch die Produktionsgeschwindigkeit auf dem Niveau {j konstant gehalten. Die zugehOrige GUTENBERG-Produktionsfunktion lautet:

x=t ·m·{j max

In Zeiten rucklaufiger Beschiiftigung wird ein Betrieb bei der quantitativen An­passung die (vorubergehend) nicht benotigten Maschinen stillegen, urn sie in Zeiten zunehmender Nachfrage wieder in Betrieb nehmen zu konnen (vgl. auch JACOB [1962], S. 210). Geht man davon aus, daB

Page 150: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 139

• in der Produktionsstelle M identische Betriebsmittel vorhanden sind, die ent­weder vollsHindig oder gar nicht eingesetzt werden kannen,

• die Nutzung einer jeden Maschine die Fertigung der Ausbringungsmenge xmax ermaglicht,

so sind bei der rein quantitativen Anpassung lediglich diskrete Produktionspunkte realisierbar, die jeweils der Nutzung einer ganzzahligen Anzahl von Maschinen entsprechen.

x E {O, xmax ' 2xmax , ... , M· xmax}

Da die Maschinen identisch sind, produzieren sie mit demselben Produktionspro­zeB und· sind durch dieselben Produktionskoeffizienten charakterisiert. Auch die in Abbildung 48 dargestellte Kostenfunktion ist nur in diskreten Punkten defi­niert, die den zulii.ssigen Ausbringungsmengen entsprechen.

K(x)

• •

KF

x o x max 2xmax 3xmax

Abb. 48: Kostenverlauf bei rein quantitativer Anpassung

In der Regel wird jedoch die quantitative Anpassung nicht in reiner Form einge­setzt, sondem mit der zeitlichen Anpassung kombiniert. Dadurch lassen sich nicht nur die der Vollbeschiiftigung einer ganzen Zahl von Maschinen entsprechenden Ausbringungsmengen realisieren, sondem jede beliebige Ausbringungsmenge innerhalb des zuHissigen Bereichs. Bei der Herleitung des zugeharigen Kosten­verlaufs ist zu beriicksichtigen, daB bei der Zuschaltung einer Maschine jeweils ein bestimmter Betrag an sprungfixen bzw. intervallfixen Kosten k F anfii.llt, der flir Vorbereitungsarbeiten, z.B. eine vorherige Wartung oder Reinigung oder ftir

Page 151: Produktionstheorie ||

140 3. Betriebswirtschaftliche Produktionsfunktionen

das Warmlaufen des Aggregats, zu veranschlagen ist. Der Betrieb wird daher zur Herstellung einer bestimmten Ausbringungsmenge gerade so viele Maschinen einschalten, daB samtliche Maschinen bis auf die letzte vollstandig ausgelastet sind. Die Kostenfunktion lautet dann:

K(x} = KF +(tai ·qi +aA ·qA +aM .qM).x+(m-l}.kF 1=1

mit: m= [ X:ax]

[ X] -- +1 xmax

falls x = n· xmax; n E N

sonst

Die Anzahl m der einzusetzenden Maschinen ergibt sich, wenn man die gefor­derte Ausbringungsmenge x durch xmax dividiert. UiBt sich diese Division nicht ohne Rest durchfiihren, so ist die Maschinenzahl urn eins zu erhOhen. Es wird unterstellt, daB die sprungfixen Kosten der ersten Maschine bereits in dem allge­meinen Fixkostenblock enthalten sind, denn es wird von einer positiven Ausbrin­gungsmenge ausgegangen. In Abbildung 49 ist der Verlauf der Kostenfunktion bei kombinierter quantitativer und zeitlicher Anpassung unter Berucksichtigung der sprungfixen Kosten dargestellt.

K(x)

~------------~----------------. x o X max 2xmax 3x max

Abb. 49: Kostenverlauf bei kombinierter quantitativer und zeitlicher Anpassung

Page 152: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 141

Bislang wurde davon ausgegangen, daB bei der quantitativen Anpassung gleich­artige Aggregate zu- bzw. abgeschaltet werden. Normalerweise ist jedoch der Betriebsmittelbestand eines Untemehmens durch Investitionen zu verschiedenen Zeitpunkten, zwischen denen durch den technischen Fortschritt eine Weiterent­wicklung der Produktionstechnologie erfolgt ist, entstanden und setzt sich daher aus Aggregaten mit unterschiedlichen Eigenschaften - insbesondere im Hinblick auf die KapazitiUen, die Faktorverbrauchsmengen und damit auch die Kosten­verlaufe - zusammen. Es liegt nahe, daB der Verlauf der Gesamtkostenkurve dann von der Reihenfolge abhangt, in der die einzelnen Aggregate zu- bzw. abge­schaltet werden.

Diesen Spezialfall der quantitativen Anpassung bezeichnet man als selektive An­passung. Unter der Annahme gleich hoher intervallfixer Kosten und gleicher Ka­pazitaten bei samtlichen Aggregaten wird der Betrieb bei einer Ausdehnung der Produktion zunachst die Anlagen zuschalten, die die geringsten variablen Kosten aufweisen, und dann sukzessiv zu Anlagen mit immer steileren Kostenverlaufen iibergehen. Bei riicklaufiger Produktion hingegen werden die Anlagen mit den hochsten Grenzkosten zuerst wieder abgeschaltet. Der aus dieser Vorgehensweise resultierende Kostenverlauf bei selektiver Anpassung ist in Abbildung 50 darge­stellt. Stimmen die sprungfixen Kosten und die Kapazitaten der Aggregate nicht iiberein, so kann sich in Abhangigkeit von der geplanten Ausbringungsmenge eine andere Reihenfolge der Nutzung der Anlagen ergeben.

~------------~----------------~ x o X max 2xmax 3xmax

Abb. 50: Kostenverlauf bei selektiver Anpassung

Page 153: Produktionstheorie ||

142 3. Betriebswirtschaftliche Produktionsfunktionen

Der in den Abbildungen 49 und 50 dargestellte Kostenverlauf bei quantitativer Anpassung gilt jedoch lediglich bei der Ausdehnung der Produktion. Bei rUckHiu­figer Beschiiftigung hingegen lassen sich die sprungfixen Kosten nicht abbauen, denn sie sind einmalig bei der Inbetriebnahme eines Aggregats angefallen und sOlnit als "sunk costs" zu betrachten. Dieses in Abbildung 51 dargestellte Pha­nomen bezeichnet man als Kostenremanenz. Je nachdem, von welchem Niveau aus der BeschiiftigungsrUckgang erfolgt, entwickeln sich die Kosten entlang einer der gestrichelten Linien.

K(x)

~------------~----------------~ x o 3xmax

Abb. 51: Kostenremanenz

Das Problem der Kostenremanenz besteht nicht nur bei der kurzfristigen quanti­tativen Anpassung, sondem auch - und sogar in noch groBerem AusmaB - bei der Variation der betrieblichen KapaziUit durch Anschaffung bzw. Stillegung von Aggregaten. Dieser Vorgang wird als Betriebsgroj3envariation bezeichnet; man unterscheidet zwei Formen:

• Bei der multiplen Betriebsgroj3envariation wird die Kapazitat des Betriebes durch Hinzuftigen oder Ausscheiden gleichartiger Anlagen verandert.

• Bei der mutativen Betriebsgroj3envariation hingegen werden unterschiedliche Anlagen angeschafft bzw. verauBert.

Wiihrend der Kostenverlauf bei multipler BetriebsgroBenvariation starke Alm­lichkeiten mit dem der quantitativen Anpassung aufweist, gleicht die mutative BetriebsgroBenvariation eher der selektiven Anpassung.

Page 154: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 143

Steigen die Produktionsanforderungen des Betriebes nachhaltig fiber seine Kapa­ziUitsgrenze an, so wird er seine Kapazitiit erweitem, indem er ein zusatzliches Aggregat anschafft und die zu dessen Bedienung erforderlichen Arbeitskrafte einstellt. Dabei fallen zusatzliche Fixkosten in Form von Abschreibungen auf die Anlage und Grundlohnen der Arbeitskrafte abo In Zeiten riicklaufiger Beschafti­gung hingegen werden nicht sofort Anlagen verkauft und Arbeitskrafte entlassen, sondem die Anlagen werden zunachst im Sinne der quantitativen Anpassung stillgelegt, urn sie bei spaterem N achfragezuwachs wieder in Betrieb nehmen zu konnen. Solange die Anlage noch im Betrieb verbleibt, fallen ihre anteiligen Ab­schreibungen als Leerkosten an, erst mit dem Ausscheiden der Anlage konnen diese Kosten endgiiltig abgebaut werden.

3.1.2.3 Intensitiitsma8ige Anpassung

Bei der reinen intensitiitsmiij3igen Anpassung wird eine Veranderung der Aus­bringungsmenge ausschlieBlich fiber die Variation der Produktionsgeschwindig­keit d erreicht; die Anzahl der eingesetzten Maschinen wird mit m und deren Laufzeit auf dem Niveau tmax konstant gehalten. Die in diesem Abschnitt unter­suchte GUTENBERG-Produktionsfunktion lautet:

x=tmax ·m·d

Wahrend sowohl bei der zeitlichen als auch bei der quantitativen Anpassung die Ausdehnung der Produktion entlang eines bestimmten ProzeBstrahls erfolgt und somit konstante Produktionskoeffizienten gelten, bedeutet die Variation der Pro­duktionsgeschwindigkeit - wie bereits in Abschnitt 3.1.1.3 beschrieben - einen Wechsel des Produktionsprozesses. Mit jedem Betriebsmittel sind nunmehr meh­rere Prozesse verbunden, die sich beziiglich der Produktionskoeffizienten und der Faktoreinsatzmengenverhaltnisse unterscheiden.

Die Abhangigkeit des Faktorverbrauchs von der Produktionsgeschwindigkeit wird dutch Verbrauchsfunktionen der Form

aj = aj(d) i = 1, ... ,n

d e[dmin,dmax ]

beschrieben, deren spezifischer Verlauf sich aus den technischen Eigenschaften der Maschine ergibt. Je nach der betrachteten Faktorart konnen die in Abbildung 52 dargestellten VerHiufe auftreten:

Page 155: Produktionstheorie ||

144 3. Betriebswirtschaftliche Produktionsfunktionen

drnin d* drnax d drnin drnax d

(1) (2)

drnin drnax d drnin drnax d

(3) (4)

drnax d drnin drnax d

(5) (6)

Abb. 52: Verbrauchsfunktionen

Page 156: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 145

(1) Eine konvexe und u-formige Verbrauchsfunktion mit einer optimalen Pro­duktionsgeschwindigkeit UiBt sich bei zahlreichen Betriebsstoffen sowie beim Energieverbrauch eines Betriebsmittels nachweisen. Abweichungen sowohl nach oben als auch nach unten von der Produktionsgeschwindigkeit d *, auf die die Anlage ausgelegt ist, fUhren zu erhohtem Faktorverbrauch je Produkt­einheit. Der Bereich [dmin , d *] entspricht der Anlauf- bzw. Warmlaufphase des Betriebsmittels, in der es im Grunde noch unterausgelastet ist. Das Ver­haJ.tnis von Faktoreinsatz zu Ausbringung wird urn so giinstiger, je mehr man sich der Normalauslastung annahert. Mit Uberschreiten von d* wird das Be­triebsmittel zunehmend starker belastet, die HeiBlaufphase [do ,dmax ] ist da­her durch wieder ansteigende Produktionskoeffizienten gekennzeichnet (vgl. hierzu auch HAUPT [1987], S. 58 ff.).

(2) Ein monoton steigender Faktorverbrauch je Ausbringungseinheit liegt z.B. fur Schmierstoffe an Motoren vor. Ab einer bestimmten Schwelle gilt er auch fur Werkstoffe, wenn es mit der Steigerung der Produktionsgeschwindigkeit zu einem immer groBeren Anteil an AusschuB in der Produktion kommt.

(3) Monotonfallende Produktionskoeffizienten gelten z.B. ffir den Arbeitskrafte­einsatz, wenn die Beschaftigung im Zeitlohn erfolgt. Je schneller die Ma­schinen laufen, desto groBer ist die Ausbringungsmenge je geleisteter Ar­beitsstunde. Dies gilt auch ffir in bestimmten Zeitintervallen durchgefiihrte WartungsmaBnahmen und den dabei auftretenden Materialverbrauch.

(4) Konstante Produktionskoeffizienten gelten insbesondere ffir den Werkstiick­verbrauch bei Montageprozessen. Dieser ist aufgrund der Stiicklistenbezie­hungen eindeutig festgelegt, solange nicht der Bereich zunehmenden Aus­schusses erreicht wird. Bei Beschaftigung im Akkordlohn ist auch der ge­messene und bezahlte Arbeitseinsatz je Produkteinheit konstant.

(5) Es kann weiter der Fall auftreten, daB die Produktionsgeschwindigkeit und damit der Faktorverbrauch je Produkteinheit nur in diskreten Intensitiitsstufen variiert werden kann, zwischen denen Umschaltvorgange erforderlich sind. Z.B. kann ein Mixer in der Regel mit zwei oder drei genau festgelegten Ge­schwindigkeiten betrieben werden.

(6) Eine stiickweise konvexe Verbrauchsfunktion gilt an Betriebsmitteln, deren Produktionsgeschwindigkeit sich jeweils innerhalb eines Teilintervalls des zuUissigen Intensitatsbereichs kontinuierlich variieren l8.8t. Benachbarte Teil­intervalle lassen sich wiederum durch Umschaltvorgange erreichen. Diese Betriebsart ist kennzeichnend fur Fahrzeugmotoren.

Page 157: Produktionstheorie ||

146 3. Betriebswirtschaftliche Produktionsfunktionen

Zusammenfassend laBt sich festste11en, daB die Verbrauchsfunktion trotz groBer Variationsmoglichkeiten in der Regel konvex verHiuft, wobei fUr die folgenden Ausfiihrungen der u-formige Verlauf als der Normalfall angesehen werden so11. Nichtkonvexe Verlaufe konnen zwar prinzipie11 auftreten, so11en im folgenden jedoch nicht berucksichtigt werden.

Zur Herleitung des Kostenverlaufs bei intensitatsmaBiger Anpassung ist die Kenntnis der ebenfalls bereits in Abschnitt 3.1.1.3 eingefiihrten Faktoreinsatz­funktionen fUr die einzelnen Verbrauchsfaktoren erforderlich:

i = 1, ... ,n

Bei Betrachtung der Produktion mit einer einzelnen Maschine erhalt man:

i = 1, ... ,n

Bei konstanter Produktionszeit ist diese Funktion nur von der Produktionsge­schwindigkeit d abhangig.

Der Verlauf einer Faktoreinsatzfunktioq ergibt sich wie folgt aus dem Verlauf der zugehorigen Verbrauchsfunktion: Zu einer u-formigen Verbrauchsfunktion erhaIt man eine s-fOrmige, erst konkav und dann konvex verlaufende Faktoreinsatz­funktion. Die Faktoreinsatzfunktion zu einer monoton steigenden Verbrauchs­funktion ist ebenfalls monoton steigend und konvex, bei einer hyperbolisch fal­lenden Verbrauchsfunktion ist die Faktoreinsatzfunktion eine konstante Funktion, und bei einer konstanten Verbrauchsfunktion verlauft die Faktoreinsatzfunktion linear steigend. Diese Verlaufe sind in Tabelle 6 nochmals zusammengefaBt und in Abbildung 53 graphisch dargestellt. Dabei sind xmin und xmax die Ausbrin­gungsmengen, die sich bei Nutzung der Produktionsgeschwindigkeiten d min

bzw. d max ergeben.

Tabelle 6: Verbrauchsfunktionen und Faktoreinsatzfunktionen

Nr. Verbrauchsfunktion Faktoreinsatzfunktion

(1) u-formig s-formig erst konkav, dann konvex

(2) monoton steigend monoton steigend

(3) hyperbolisch fallend konstant

(4) konstant linear steigend

Page 158: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 147

Ti (x) Ti (x)

x min Xmax: x x min xmax x (2

(1)

Ti (x) Ti (x)

x min Xmax x X min Xmax: x (4

(3)

Abb. 53: Faktoreinsatzfunktionen

Die zur u-formigen Verbrauchsfunktion gehOrende s-fOrmige Faktoreinsatzfunk­tion verHiuft in der Regel monoton steigend; lediglich bei einer sehr spitzen Para­bel als Verbrauchsfunktion kann sich rechnerisch auch eine in einem Teilintervall fallende Faktoreinsatzfunktion ergeben (vgL fUr ein Beispiel ELLINGER I HAUPT [1996], s. 114 ff.).

Durch Multiplikation der Faktoreinsatzfunk:tionen mit den zugehorigen Faktor­preisen und Addition tiber samtliche Produktionsfaktoren erhaIt man die Funktion der gesamten Kosten:

n+2 K(x) = K(d ·t)= KF + Lai(d).d ·t·qi

i=1

Page 159: Produktionstheorie ||

148 3. Betriebswirtschaftliche Produktionsfunktionen

Da auch fUr den Arbeitseinsatz und die leistungsabhangige Betriebsmittelnutzung Verbrauchsfunktionen mit einem der zuvor diskutierten Verlaufe gelten, werden diese beiden Produktionsfaktoren gemeinsam mit den anderen in der Summe er­faSt.

Bei Vemachlassigung der Fixkosten und Division durch x = d . t erhiilt man die Funktion der variablen Stiickkosten:

Aufgrund der Verlaufe von Faktoreinsatz- und Verbrauchsfunktionen verlauft -wie in den Abbildungen 54 und 55 dargestellt - die Gesamtkostenfunktion in der Regel s-formig und die Stiickkostenfunktion u-formig.

K(x)

x

Abb. 54: Gesamtkostenverlauf bei intensitatsmiiBiger Anpassung

Der konvexe Verlauf der Stiickkostenfunktion liiBt sich wie folgt begriinden: Die Funktion ergibt sich als mit den Faktorpreisen gewichtete Summe der Ver­brauchsfunktionen. Aus der Konvexitat der Verbrauchsfunktionen folgt unmittel­bar die Konvexitat der Stiickkostenfunktion in Abhiingigkeit von der Produkti­onsgeschwindigkeit d. Sind einzelne Verbrauchsfunktionen u-formig oder treten sowohl steigende als auch fallende Verbrauchsfunktionen auf, so verlaufen die Stiickkosten u-formig, d.h. es existiert eine optimale Produktionsgeschwindigkeit d opt , bei der die Produktion zu den geringsten Stiickkosten erfolgt.

Page 160: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 149

d o d max

Abb. 55: Sttickkostenverlaufbei intensiUitsmaBiger Anpassung

Das Minimum der Sttickkosten laBt sich analytisch durch Nullsetzen der ersten Ableitung der Funktion der variablen Sttickkosten bestimmen:

n+2 , kv'{d)= Ladd)·qi~O

i=l

Dieses Minimum der Sttickkosten kommt entweder dadurch zustande, daB samt­liche Verbrauchsfunktionen in d opt ihr Minimum annehmen, oder - dies ist der praktisch relevantere Fall - daB diese bei unterschiedlichen Produktionsge­schwindigkeiten ihr Minimum annehmen und in d opt gegenUiufige Tendenzen der einzelnen Verbrauchsfunktionen zum Ausgleich gebracht werden.

Der s-formige Verlauf der Gesamtkostenfunktion liillt sich auf zwei Arten erklii­ren:

(1) Die Multiplikation der u-fOrmigen Sttickkostenfunktion mit einer in d linea­ren Funktion fiihrt zu einer s-fOrmigen Gesamtkostenfunktion.

(2) Analog zur Argumentation bei der Sttickkostenfunktion ergibt sich die Ge­samtkostenfunktion als mit den Faktorpreisen gewichtete Summe der s­fOrmigen Faktoreinsatzfunktionen und verliiuft daher auch selbst s-formig.

Diese Herleitungen werden im folgenden durch ein Beispiel veranschaulicht: An einem Aggregat sei die intensiUltsmiillige Anpassung im Intensitatsbereich von 1 bis 5 zuliissig. Fiir die drei benotigten Einsatzfaktoren gelten die folgenden Ver­brauchsfunktionen:

Page 161: Produktionstheorie ||

150

al(d)=d2 -5d+20

a2(d) = 2 d 2 -14 d+lO

a3(d) = 4 d

3. Betriebswirtschaftliche Produktionsfunktionen

Offensiehtlieh nimmt der erste Einsatzfaktor bei der Intensitiit 2,5 sein Ver­brauehsminimum an, der zweite bei der Intensitiit 3,5 und der dritte aufgrund sei­nes proportionalen Verbrauehsverlaufs bei der Minimalintensitiit von 1. FUr Faktorpreise in Rohe von ql = 2, q2 = 5 und q3 = 2 erhiilt man als Funktion der variablen Sruekkosten:

k(d) = 2.(d2 -5 d +20)+5.(2 d 2 -14 d + 10)+2.(4 d)

= 12 d 2 -72 d +90

Die sruekkostenminimale Intensitiit liegt bei dem Wert 3. Betriigt der Preis des dritten Einsatzfaktors nieht 2, sondem 10 Geldeinheiten, so ergibt sieh eine sruekkostenminimale Intensitiit von 1,6, da nunmehr dieser Faktor mit einem ent­spreehend groBeren Gewicht in die Sruekkostenfunktion eingeht.

Rein formal ergibt sieh in der Theorie der Anpassungsformen offensiehtlieh ein der klassischen Produktionstheorie entspreehender Gesamtkostenverlauf (vgl. noehmals Abb. 17). Die beiden Ansiitze unterseheiden sieh jedoeh hinsiehtlieh der Begriindung dieses Kostenverlaufs: Wiihrend der konkave Bereich der Ko­stenfunktion in der klassisehen Produktionstheorie mit einer zuniiehst zunehmen­den Grenzproduktivitiit der Einsatzfaktoren erkliirt wird, liegt seine Ursaehe bei der GUTENBERG-Produktionsfunktion in der Konvexitiit der Verbrauehsfunktio­nen bei der intensitiitsmiiBigen Anpassung begriindet.

3.1.3 Wahl der Anpassungsformen

In der Regel wird ein Betrieb auf Besehiiftigungssehwankungen nieht aus­sehlieBlieh mit einer Anpassungsform reagieren, sondem diese unter Kostenge­siehtspunkten auswiihlen und kombinieren. In diesem Absehnitt werden zuniiehst einige Entseheidungsprobleme bei der Wahl von Anpassungsformen behandelt und ansehlieBend der kostenminimale Anpassungspfad abgeleitet, der die Fahr­weise der Betriebsmittel angibt, die die Ausweitung oder Einsehriinkung der Be­sehiiftigung zu den geringsten Kosten ermoglieht.

Page 162: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 151

3.1.3.1 Quantitative Anpassung oder Uberstunden

Fiir Ausbringungsmengen, die sich innerhalb der Normalkapazitiit einer Maschi­ne erzeugen lassen, wird der Betrieb immer die zeitliche Anpassung wahlen, da sie wegen ihres streng proportionalen Kostenverlaufs in diesem Bereich die giin­stigste Moglichkeit zur Variation der Produktion ist. Ein Entscheidungsproblem stellt sich somit erst bei Ausbringungsmengen, die die innerhalb der normalen Arbeitszeit mit der vorgegebenen Produktionsgeschwindigkeit d herstellbare Menge xmax tibersteigen.

Da bei der quantitativen Anpassung die sprungfixen Kosten lediglich in Abhan­gigkeit von der Zuschaltung einer weiteren Maschine und unabhangig von der darauf hergestellten Ausbringungsmenge anfallen, werden die ersten Einheiten sehr stark mit den zusiitzlichen Fixkosten belastet. Wenn der Betrieb daneben tiber die Moglichkeit verftigt, durch Uberstunden die zeitliche Anpassung tiber xmax hinaus auszudehnen, so werden die zusiitzlich hergestellten Produkteinhei­ten lediglich mit dem proportionalen Oberstundenzuschlag belastet. Mit Hilfe einer Break-Even-Analyse li:iBt sich die kritische Ausbringungsmenge x * ermit­teln, bei der die beiden Anpassungsstrategien zu den gleichen Kosten fiihren (vgl. Abbildung 56).

K(x)

L-______________________________ ~ X

o

Abb. 56: Break-Even-Analyse

* x

Dabei gelten die beiden folgenden Kostenfunktionen:

Page 163: Produktionstheorie ||

152 3. Betriebswirtschaftliche Produktionsfunktionen

• bei zeitlicher Anpassung mit Uberstunden:

Kl{X} = KF +(~ai 'qi +aA 'qA +aM .qM].x+aA .{x-xmax}q~ 1=1

• bei quantitativer Anpassung durch Zuschaltung einer zweiten Maschine:

K2{x} = KF +(tai 'qi +aA 'qA +aM .qM]'X+kF 1=1

Analytisch laBt sich die kritische Ausbringungsmenge x * nach Uberschreiten der maximalen Ausbringungsmenge wie folgt bestimmen:

<=> kF =aA '{x-xmax}q~

.......... x-x = kF ......... max + aA'qA

* kF <=> x = +x + max aA'qA

Sie liegt genau dort, wo die sprungfixen Kosten durch die je Produkteinheit an­fallenden UberstundenzuschHige kompensiert werden. 1m Bereich xmax < x < x*

erweist sich die zeitliche Anpassung mit Uberstunden als kostengiinstiger, im Bereich x > x * dominiert die quantitative Anpassung durch Zuschaltung einer zweiten Maschine. Bei x = x * besteht hinsichtlich der Kosten Indifferenz zwi­schen den beiden Anpassungsstrategien. Durch Auswahl der jeweils kostengiin­stigsten Anpassungsform laBt sich der in Abbildung 56 fett gekennzeichnete Verlauf der Gesamtkostenfunktion erreichen.

Verfiigt z.B. ein Betrleb mit Fixkosten von 1.000 GE fiber zwei identische Anla­gen mit einer Kapazitiit von jeweils 100 StUck, die jeweils sprungfixe Kosten von 200 GE und variable StUckkosten von lOGE aufweisen, und fruIt fiir die durch Uberstunden erzeugten Einheiten ein Zuschlag von 5 GE pro StUck an, so lauten die relevanten Kostenfunktionen fiir Ausbringungsmengen zwischen 100 und 200 StUck:

K1{x} = 1.000+lOx+5{x-100}

K2 {x} = 1.000+ lOx + 200

Page 164: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 153

Die kritische Ausbringungsmenge, bei der beide Anpassungsformen zu denselben Kosten fiihren, lautet somit:

x * = 140 StUck

Fiir Ausbringungsmengen unter 140 StUck fiihrt die zeitliche Anpassung durch Uberstunden zu den geringeren Kosten, fiir groBere Ausbringungsmengen ist die Zuschaltung einer zweiten Maschine kostengUnstiger. Die Funktion der minima­len Gesamtkosten im Bereich von 100 bis 200 StUck lautet somit:

{500+15X

K(x}= 1.200+10x fiir 100 < x S; 140

fiir 140 < x S; 200

Aufgrund der Kostenremanenz sollte die Zuschaltung der zweiten Maschine je­doch nicht bereits bei einmaligem, geringffigigem Uberschreiten der kritischen Menge erfolgen, sondem erst, wenn man von einem nachhaltigen Ansteigen der Beschaftigung fiber x * hinaus ausgehen kann.

3.1.3.2 ZeitIiche oder intensitiitsma8ige Anpassung

Wie in Abschnitt 3.1.2.3 gezeigt wurde, verHiuft die Funktion der variablen StUckkosten in der Regel konvex und u-formig, so daB es eine optimaie Produk­tionsgeschwindigkeit d opt gibt, bei der die StUckkosten minimal sind. Bei voll­standiger Ausnutzung der Normalarbeitszeit t max laBt sich mit dieser Produk­tionsgeschwindigkeit auf einer Maschine eine Ausbringungsmenge von

xO =dopt ·t max

erreichen. Ausbringungsmengen unterhalb von XO lassen sich erreichen, indem entweder die Produktionsgeschwindigkeit oder die Arbeitszeit isoliert reduziert oder aber beide Anpassungsformen gleichzeitig gewahlt werden. Wie in Abbil­dung 57 anhand der StUckkostenfunktion und in Abbildung 58 anhand der Ge­samtkostenfunktion gezeigt wird, ist es bei Vemachliissigung von Uberstunden optimal, im Bereich unterhalb von XO die zeitliche, oberhalb hingegen die inten­sitatsmiiBige Anpassung zu wahlen. Graphisch laBt sich XO als die Ausbrin­gungsmenge konstruieren, bei der ein Fahrstrahl vom Ursprung an die Gesamtko­stenfunktion zur Tangente wird.

Page 165: Produktionstheorie ||

154 3. Betriebswirtschaftliche Produktionsfunktionen

ky(x)

d o dmin dmax

Abb.57: Stiickkostenverlauf bei Kombination von zeitlicher und intensitatsma­Siger Anpassung

~--~--------------~----~------~ x o XO Xmax

Abb.58: Gesamtkostenverlauf bei Kombination von zeitlicher und intensitats­maBiger Anpassung

Da bei der zeitlichen Anpassung die Produktion mit einem einzigen Produktions­prozeB, der der stiickkostenminimalen Produktionsgeschwindigkeit zugeordnet ist, erfolgt, sind in diesem Bereich die Stiickkosten konstant, die Gesamtkosten steigen linear an. Zeitliche Anpassung mit der optimalen Produktionsgeschwin­digkeit bedeutet, daB die Maschine einen Teil der zur Verfiigung stehenden Ar-

Page 166: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 155

beitszeit stillsteht und nur solange mit dopt Uiuft, wie es fiir die Erzeugung der gewlinschten Ausbringungsmenge erforderlich ist. Es wird also eine Konvex­kombination zwischen der Nullaktivitiit und dem der optimalen Produktionsge­schwindigkeit zugeordneten ProduktionsprozeB vorgenommen. Dadurch gelingt es, den linken Ast der StUckkostenfunktion bzw. den nichtkonvexen Bereich der Gesamtkostenfunktion "wegzuschneiden", d.h. durch kostengiinstigere Anpas­sungsstrategien zu dominieren.

Wenn bei XO die zeitliche Anpassung voU ausgeschopft ist, HiBt sich eine weitere Erhohung der Ausbringungsmenge nur durch die intensiUitsmaBige Anpassung erreichen. Damit ist ein Ansteigen der StUckkosten und eine iiberproportionale Zunahme der Gesamtkosten verbunden. Abbildung 59 zeigt den kostenminimalen Anpassungspfad in einem Zeit-Leistungs-Diagramm.

xO tmu .•. r---____________ ~ ______ ~xmu

x = l·d

~~~ ______________ L-____ ~ ____ ~ d

drrun

Abb. 59: Kombination von zeitlicher und intensitatsmaBiger Anpassung

Zur Steigerung der Ausbringungsmenge wird hier zunachst die zeitliche Anpas­sung ausgeschopft, anschlieBend erfolgt eine intensitatsmaBige Anpassung, bis bei voUstandigem AusschOpfen sowohl der zeitlichen als auch der intensitiitsma­Bigen Anpassung die maximale Ausbringungsmenge erreicht ist. Charakteristisch fiir diesen Anpassungspfad ist, daB ausschlieBlich reine Anpassungsformen ein­gesetzt werden, denn eine gleichzeitige Ausdehnung von Produktionszeit und Produktionsgeschwindigkeit wiirde zu hoheren Kosten fiihren.

Page 167: Produktionstheorie ||

156 3. BetriebswirtschaJtliche Produktionsfunktionen

3.1.3.3 Intensitatssplitting

Eine Sonderform der Kombination von zeitlicher und intensiHitsmaBiger Anpas­sung ist das Intensitiitssplitting. Es findet insbesondere dann Anwendung, wenn aus technologischen Grunden die zeitliche Anpassung nicht zuHissig ist bzw. eine zeitweise Stillegung der Produktion zu extrem hohen Wiederanlaufkosten ruhren wiirde. Beispiele dafiir sind chemische Prozesse wie die Herstellung von Schwe­felsaure oder der HochofenprozeB, die in der Regel nicht unterbrochen werden, sondem bei denen sich die Ausbringungsmenge lediglich durch eine Variation der Produktionsgeschwindigkeit steuem laBt.

Dennoch lassen sich auch in diesem Fall durch eine geschickte Kombination von ausgesuchten Aktivitaten bzw. den zugehOrigen Produktionsgeschwindigkeiten die Gesamtkosten im nichtl<:onvexen Bereich der Kostenfunktion unter den bei rein intensitatsmaBiger Anpassung erforderlichen Betrag senken: Wie in Abbil­dung 60 dargestellt, wird beim IntensiHitssplitting eine Konvexkombination zwi­schen der gerade noch zuHissigen Produktionsgeschwindigkeit d min und der Pro­duktionsgeschwindigkeit d l , bei der ein Fahrstrahl yom Beginn der Kostenfunk­tion an die Kurve zur Tangente wird, vorgenommen. Dadurch verlauft die Ge­samtkostenfunktion im Bereich zwischen d min und d l linear. 1m Bereich zwi­schen d l und d max gilt weiterhin der ursprungliche, konvexe Kostenverlauf bei rein intensiUitsmaBiger Anpassung.

K(d)

d o d max

Abb. 60: IntensiHitssplitting

Page 168: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 157

Indem man einen Teil der Produktionszeit mit der Produktionsgeschwindigkeit d min und die restliche Zeit mit d 1 arbeitet, wird die bei rein intensitatsmiiBiger Anpassung geltende Kostenfunktion im Intervall [dmin , d 1] durch ihre konvexe Riille ersetzt. Von eventuell auftretenden Umriistkosten beim Wechsel der Pro­duktionsgeschwindigkeit sei hier aus Vereinfachungsgriinden abgesehen. Wenn ein Intensitatssplitting zuHissig ist, laBt sich durch eine geeignete Wahl von Pro­duktionsgeschwindigkeiten immer ein insgesamt konvexer Verlauf der Gesamt­kostenfunktion erreichen. Es laBt sich zeigen, daB beim Intensitatssplitting ein Wechsel zwischen hochstens zwei Produktionsgeschwindigkeiten erfolgt (vgl. KISTNER [1993a], S. 163 ff.).

3.1.3.4 Kostenminimaler Anpassungspfad

Wahrend in den vorhergehenden Abschnitten jeweils zwei Anpassungsformen betrachtet wurden, urn die Bereiche herauszuarbeiten, in denen sie zu den gerin­geren Kosten fiihren, ist nunmehr zu untersuchen, we1che Anpassungsstrategie gewahlt wird, wenn aile drei Anpassungsformen zur Verfiigung stehen. Ohne Beriicksichtigung von eventuell den zuHissigen Bereich einschriinkenden zusatz­lichen Restriktionen auf der Seite der Einsatzfaktoren oder bei der Ausbrin­gungsmenge hat der kostenminimale Anpassungspfad den in Abbildung 61 darge­stellten Verlauf:

K(x)

KF

~----------------~------------~x o

Abb. 61: Kostenminimaler Anpassungspfad

Page 169: Produktionstheorie ||

158 3. Betriebswinschaftliche Produktionsfunktionen

Zunachst erfolgt eine zeitliche Anpassung mit der kostenminimalen Produktions­geschwindigkeit d opt , die dem Minimum der Funktion der variablen Stiickkosten entspricht. Wenn bei Erreichen von tmax , der maximalen Normalarbeitszeit, kei­ne weitere zeitliche Anpassung und auch keine Uberstunden moglich sind, geht man zur intensitatsmaBigen Anpassung mit d > d opt tiber. Diese Anpassungsform wird solange beibehalten, bis entweder die maximal zulassige Produktionsge­schwindigkeit d max erreicht ist oder eine Break-Even-Analyse ergibt, daB die Zuschaltung einer weiteren Maschine kostengiinstiger ist.

Als vorlaufiges Ergebnis dieser Untersuchungen laBt sich festhalten, daB unter den zugrunde gelegten Bedingungen - Zulassigkeit samtlicher Anpassungsformen und keine extemen Restriktionen - auf dem kostenminimalen Anpassungspfad ausschlieBlich reine AnpassungsJormen eingesetzt werden. Ein Wechsel der An­passungsform erfolgt immer dann, wenn entweder die bislang genutzte ausge­schopft ist oder wenn eine Break-Even-Analyse den Wechsel aus Kostengriinden nahelegt.

Obwohl bei Zulassigkeit verschiedener Anpassungsformen die Moglichkeit be­steht, daB sich eine bestimmte Ausbringungsmenge durch mehrere effiziente Kombinationen von Faktoreinsatzmengen erzeugen laBt, ergibt sich die Eindeu­tigkeit der Produktions- und damit auch der Kostenfunktion durch die Auswahl der jeweils kostengtinstigsten Kombination von Anpassungsformen.

3.1.4 Beriicksichtigung von Umweltschutzrestriktionen

Als GUTENBERG Anfang der ftinfziger Jahre seine Theorie der Anpassungsfor­men konzipierte, hatte die Bertlcksichtigung des Umweltschutzes bei der indu­strlellen Produktion noch nicht die Bedeutung, die ihr heute zugemessen wird. Daher wird nun untersucht, inwieweit sich durch UmweltschutzanJorderungen ausgelOste Restrlktionen in die GUTENBERG-Produktionsfunktion einbeziehen lassen. (Zur Bertlcksichtigung von Umweltschutzaspekten in der GUTENBERG­Produktionsfunktion vgl. insbesondere DINKELBACH / PIRO [1990]; KRn..US [1993]; DINKELBACH/ ROSENBERG [1994], S. 134 ff.; VENTZKE [1994]; STEVEN [1994c]; BOGASCHEWSKY [1995], S. 140 ff.)

• Offensichtlich kann, wie bereits in Abschnitt 2.3.2.4 gezeigt, die Aufnahme der als Einsat:ifaktoren fur die Produktion benotigten Umweltgiiter analog zu den traditionellen Produktionsfaktoren erfolgen. Es lassen sich Faktoreinsatz-

Page 170: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 159

und Verbrauchsfunktionen sowie - bei Kenntnis ihrer Preise - Kostenfunktio­nen fUr die einzelnen Anpassungsformen aufstellen.

• Die Inanspruchnahme der natiirlichen Umwelt auf der Outputseite durch die bei der Produktion als unerwiinschte Kuppelprodukte entstehenden Abfiille und Schadstoffemissionen Hillt sich durch Emissionsfunktionen erfassen, ffir die analog zu den Verbrauchsfunktionen ein konvexer und u-formiger Verlauf angenommen wird (vgl. z.B. ADAM [1993a], S. 212 ff.).

• Soweit im Rahmen einer pretialen Steuerung der Umweltinanspruchnahme fUr die Emissionen Preise in Form von Umweltabgaben erhoben werden, gehen diese ebenso wie die Preise der Einsatzfaktoren in die Stiickkostenfunktion ein und beeinflussen die Lage der stiickkostenminimalen Intensitiit.

• Die mengenmiij3ige Steuerung der Umweltinanspruchnahme durch Aufiagen, Grenzwerte oder Einsatzmengenbeschriinkungen bedeutet zusatzliche Restrik­tionen ffir das Entscheidungsproblem, durch die der Bereich zulassiger Losun­gen eingeschriinkt wird.

• Durch Recycling entstehen Sekundarrohstoffe, und die zu beschaffende Menge des entsprechenden Primarrohstoffs verringert sich. Dadurch verschieben sich sowohl die verbrauchs- und die kostenminimalen Intensitaten als auch die durch Faktor- und Emissionsbeschriinkungen gegebenen Produktionsgrenzen.

• Entsorgungsaktivitiiten bedeuten einen parallel zur HersteUung des Hauptpro­duktes ablaufenden ProduktionsprozeB; sie sind daher in einem separaten Pro­duktionssystem zu erfassen.

• Soweit staatliche Umweltschutzvorschriften nur durch Investitionen in additive oder integrierte Umweltschutztechnologien erfiiUt werden konnen, erfolgt ein Prozej3wechsel zu einer neuen Technologie mit veranderten technologischen Rahmenbedingungen, ffir die der optimale Anpassungspfad neu bestimmt wer­denmuB.

• Eine durch Umweltschiiden, die aufgrund frliherer industrieUer Betiitigung ent­standen sind, hervorgerufene Verschlechterung der Einsatzfaktorqualitat oder der prozeBtechnischen Rahmenbedingungen der Produktion kann sich ver­brauchserhohend auf den ProduktionsprozeB auswirken, d.h. die betroffenen Verbrauchs- und Faktoreinsatzfunktionen verschieben sich nach oben. Ein Beispiel ffir derartige Schiiden ist die in der chemischen Industrie teilweise er­forderliche Aufbereitung von den Flussen entnommenem Kuhlwasser, urn Korrosionsschaden an den Leitungen zu vermeiden.

Page 171: Produktionstheorie ||

160 3. Betriebswirtschaftliche Produktionsfunktionen

Auf einige der genannten Ansatzpunkte - und zwar auf die Auswirkungen der Abgaben- und Auflagensteuerung sowie auf die sich durch die Einbeziehung von Recycling ergebenden Anpassungsmoglichkeiten - wird in der nachfolgenden Analyse nailer eingegangen. Dabei werden jeweils sowohl die Auswirkungen auf den optimalen Anpassungspfad als auch die Kostenwirkungen untersucht.

FUr die verschiedenen mit der Produktion verbundenen Emissionsarten X] mit

I = I, ... , N seien die konvexen Emissionsfunktionen

I=I, ... ,N

bei intensitatsniliBiger Anpassung bekannt. Dabei gibt e] (d) die je Produktein­heit .emittierte Menge des Schadstoffs I in Abhangigkeit von der Produktionsge­schwindigkeit d an. Analog zur Faktoreinsatzfunktion ergibt sich die Gesamt­emission F] des Schadstoffs I bei einer bestimmten Ausbringung als:

F](x) = e](d)·x = e](d)·t·m·d 1= I, ... ,N

Die zuHissigen Mengen fUr die Emissionen der verschiedenen Schadstoffe sind in Form von Grenzwerten F]o vorgegeben. FUr die Einsatzmengen der Werkstoffe gelten wiederum Obergrenzen rt; weiter wird eine Mindestausbringungsmenge in Hohe von XO gefordert.

Die Technologiemenge der GUTENBERG-Produktionsfunktion bei expliziter Be­rtlcksichtigung von Umweltwirkungen laBt sich wie folgt darstellen:

r; =ai(d)·t·m·d 5,r;o

F] =e](d).t.m.d5,F]o

x=t·m·d~xo

tmin 5, t 5, tmax mE [0,1,2, ... , M] dmin 5, d 5, d max

i =I, ... ,n

I=I, ... ,N

Zur Vereinfachung der Darstellung wird im folgenden davon ausgegangen, daB die Anpassung an einer Maschine erfolgt, d.h. es werden lediglich die Beziehun­gen zwischen zeitlicher und intensitatsmaBiger Anpassung untersucht.

Page 172: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 161

3.1.4.1 Abgabensteuerung

Aufgrund der in Abschnitt 2.3.2.4 festgestellten fonnalen Analogien zwischen herkommlichen Giitem und Einsatzfaktoren sowie Umweltgiltem und -faktoren lassen sich sowohl aus der natiirlichen Umweit stammende Einsatzfaktoren als auch bei der Produktion entstehende Emissionen in der Analyse entsprechend den traditionellen Produktionsfaktoren erfassen. Daher bedeutet die im foigenden vorgenommene Beschriinkung auf Schadstoffemissionen keine Einschrankung der Allgemeinheit der Betrachtungen.

Die Belastung der Umweltinanspruchnahme, insbesondere der Emission einer bestimmten Schadstoffart, durch eine mit dem SchadstoffausstoB ansteigende Abgabe bewirkt, daB dieser Kostenfaktor zusatzlich in der Kostenfunktion zu be­rucksichtigen ist. Falls die Emission zuvor keiner Abgabe unterlag, wird der ent­sprechende Schadstoff yom "freien Gut" nunmehr zu einem wirtschaftlichen Gut, ffir dessen Entstehung Zahlungen zu leisten sind. Daraus resultiert ein Anreiz zur Verringerung der Emission.

Durch die Abgabe als zusatzlichen Kostenfaktor steigen die Kosten insgesamt an, das Minimum der Stiickkostenfunktion, in die jetzt auch die Abgabe auf die Emission eingeht, verschiebt sich in Richtung d (e min), des Minimums der Emis­sionsfunktion des betreffenden Schadstoffs. Es erfolgt also eine intensitatsmiiBige Anpassung, durch die gleichzeitig die neue kostenminimale Produktionsge­schwindigkeit d~~~ realisiert und der AusstoB des zusatzlich zu berucksichtigen­den Schadstoffs reduziert wird. Falls das Emissionsminimum links yom Kosten­minimum liegt - dieser Fall wird auch als linksminimale Schadstoffart bezeichnet (vgl. VON ZWEm..1 BRINK [1994], S. 1112) -, ist die neue kostenminimale Inten­sitiit geringer ais die aIte, bei einer rechtsminimalen Schadstoffart steigt sie an. Dieser Effekt ist in den Abbildungen 62 und 63 anhand der Stiickkosten- und Emissionskurven bei je einer links- bzw. rechtsminimalen Schadstoffart veran­schaulicht.

Die zugehOrige Bewegung im Zeit-Leistungs-Diagramm ist in Abbildung 64 dar­gestellt. Sie verlauft unter der Voraussetzung, daB dieselbe Ausbringungsmenge x = x erzeugt werden soIl, wie foIgt: 1st die kostenminimale Intensitat unter Be­rucksichtigung der Abgabe geringer als zuvor, so wird zunachst die Produktions­zeit erhOht, um die Ausbringung konstant zu halten. 1st wegen des Erreichens der Kapazitatsgrenze keine weitere zeitliche Anpassung nach oben mehr moglich, so wird die Produktionsgeschwindigkeit wieder erhOht. In Fall (a) IiiBt sich die neue kostenminimale Intensitat aus Kostengriinden nicht realisieren.

Page 173: Produktionstheorie ||

162

e(d)

k(d)

d min

3. Betriebswirtschaftliche Produktionsfunktionen

d opt d opt neu alt d max d

Abb. 62: Kostenwirkungen einer Umweltabgabe auf eine linksminimale Schad­stoffart

Page 174: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 163

e(d)

k(d)

d opt d opt alt neu d max d

Abb. 63: Kostenwirkungen einer Umweltabgabe auf eine rechtsminimale Schad­stoffart

Page 175: Produktionstheorie ||

164 3_ Betriebswirtschaftliche Produktionsfunktionen

t

t max

o

-------p .... -

dmin d opt neu

x=x

dmax

a) linksminimale Schadstoffart

t

t max

o

----I - - - - - - ~ -- -- --, x = dmax . t max

I ! I I I I I ~ I I I I I I I I

x=x

dopt dopt alt neu dmax

b) rechtsminimale Schadstoffart Abb. 64: Anpassungspfad bei Abgabensteuerung

d

d

1m umgekehrten Fall (b), d.h. bei einer ErhOhung der stiickkostenminimalen In­tensitiit aufgrund der Einfiihrung einer Abgabe auf eine rechtsminimale Schad­stoffart, laBt sich die gewiinschte Ausbringungsmenge nur durch eine entspre-

Page 176: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 165

chende Verringerung der Produktionszeit aufrechterhalten. Es findet also in bei­den Fallen eine Substitution von zeitlicher und intensitiitsmiijJiger Anpassung auf der Isoquante statt.

Die durch die Abgabe verursachte Verminderung bzw. ErhOhung der stiickko­stenminimalen Intensitat in Richtung des Emissionsminimums der betroffenen Schadstoffart hat als Primiireffekt eine Reduktion des AusstoBes dieser Schad­stoffart zur Folge. Dariiber hinaus wird der Verbrauch samtlicher Faktorarten und die Emission samtlicher anderer Schadstoffarten durch die Verlinderung der Pro­duktionsgeschwindigkeit beeinfluBt: Wird die Abgabe auf eine linksminimale Schadstoffart erhoben, so fallen die Verbrauche bzw. Emissionen der ebenfalls linksminimalen Faktor- bzw. Schadstoffarten, deren Verbrauchs- bzw. Emissi­onsminimum links von der neuen stiickkostenminimalen Intensitat liegt. Hinge­gen steigen die Verbrauche bzw. Emissionen derjenigen Faktor- bzw. Schad­stoffarten, deren Verbrauchs- bzw. Emissionsminimum rechts von der alten stiickkostenminimalen Intensitat liegt. Fur die Faktor- bzw. Schadstoffarten, de­ren Verbrauchs- bzw. Emissionsminimum zwischen der alten und der neuen stiickkostenminimalen Intensitat liegt, ist keine eindeutige Aussage moglich; es hlingt von der exakten Lage des Minimums sowie dem Kurvenverlauf ab, welcher Effekt uberwiegt.

Entsprechend gilt bei einer auf eine rechtsminimale Schadstoffart erhobenen Ab­gabe, daB die Verbrauche bzw. Emissionen der ubrigen Faktor- bzw. Schad­stoffarten in Abhangigkeit davon steigen oder fallen, ob es sich urn links- bzw. rechtsminimale Verbrauchs- oder Emissionsfunktionen handelt, sowie von der exakten Lage ihres Minimums. Die Erhebung einer Umweltabgabe auf eine be­stimmte Schadstoffart bewirkt somit nicht nur eine Reduktion dieser Emission, sondem letztlich eine partielle Substitution des teurer gewordenen Umweltfaktors durch andere Faktorarten. (V gl. hierzu auch die Analyse bei KISTNER / SONNTAG [1993])

3.1.4.2 Autlagensteuerung

Kommt die zunehmende Knappheit von Umweltgutem in staatlichen Auflagen und Grenzwerten zum Ausdruck, so hat dies zunachst - solange nicht die im Rahmen einer Umweltkostenrechnung ermittelten Opportunitatskosten einer sol­chen Einschrankung der Menge der zulassigen Produktionsmoglichkeiten explizit berucksichtigt werden - keine Auswirkungen auf die kostenminimale Intensitat; es wird vielmehr der fiir die einzelnen Anpassungsformen zulassige Bereich ein-

Page 177: Produktionstheorie ||

166 3. BetriebswirtschaJtliche Produktionsfunktionen

geschdinkt. Bei Betrachtung einer absoluten Obergrenze fiir die Inanspruchnah­me eines Umweltfaktors, z.B. eines in der Planungsperiode begrenzten Entsor­gungskontingents oder einer endlichen Deponiekapazitiit, ergibt sich fiir eine Er­hohung der Ausbringungsmenge der in Abbildung 65 dargestellte Anpassungs­pfad im Zeit-Leistungs-Diagramm.

t '---r---- -----·-----1 ! I ! t 1 ______________ 1.. __________ _

o d - dopt mm

Abb. 65: Anpassung bei Existenz von Emissionsgrenzen

d

Wie im allgemeinen Fall, erfolgt auch hier die ErhOhung der Ausbringungsmenge x zunachst durch zeitliche Anpassung mit der optimalen Intensitat d opt , aller­dings lediglich bis t1 < t max • In diesem Punkt wird der Rand des zulassigen Be­reichs, der durch einen beschrankten Faktorbestand, begrenzte Entsorgungsmog­lichkeiten oder eine Emissionsgrenze gegeben ist, erreicht (vgl. zum Verlauf der Restriktionen DINKELBACH I ROSENBERG [1994], S. 163 ff.). Es schlieBt sich -dem Verlauf der jeweils bindenden Restriktionen folgend - ein Bereich mit ge­mischter Anpassung, d.h. gleichzeitiger ErhOhung der Produktionsdauer und der Produktionsgeschwindigkeit, an. Wenn die Einsatzzeit tmax ausgeschopft und keine weitere zeitliche Anpassung moglich ist, laBt sich die Ausbringung noch mit rein intensitiitsmaBiger Anpassung erhOhen, bis die durch eine weitere Ober­grenze determinierte maximale Ausbringungsmenge Xmax erreicht ist.

Dieser Anpassungspfad ist bei rechtsminimalen Faktor- und Schadstoffarten so­lange zulassig, bis bei einer ErhOhung der Produktionsgeschwindigkeit tiber das

Page 178: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 167

Minimum hinaus die Mengenbeschrankung wieder bindend wird. Bei linksmini­malen Faktor- und Schadstoffarten hingegen ist eine weitere Ausdehnung der Produktion nur dann moglich, wenn die Beschrankung bei der kostenminimalen IntensiHit noch nicht bindend ist, andernfalls muS die Ausbringungsmenge sogar reduziert werden, urn wieder in den Bereich zuHissiger AktiviUiten zu gelangen.

Urn trotz einer Einfiihrung von Mengenbeschrankungen, durch die die zuvor be­nutzte Aktivitat unzulassig wird, dieselbe Ausbringungsmenge herstellen zu kon­nen, kann - ahnlich wie im Fall der Abgabensteuerung - mit einer Kombination von zeitlicher und intensitatsmaBiger Anpassung reagiert werden. Damit in jedem Fall eine Reaktion auf die Auflage moglich ist, miissen folgende Voraussetzun­gen erfiillt sein:

• Weder die zeitliche noch die intensitatsmaBige Anpassung diirfen vollstandig ausgeschOpft sein.

• Die beziiglich des knappen Faktors emissionsminimale Intensitat darf nicht mit der kostenminimalen Intensitat iibereinstimmen.

Falls das Emissionsminimum links von dem Stiickkostenminimum liegt, wird durch eine Reduktion der Produktionsgeschwindigkeit der Produktionskoeffizient des knappen Faktors reduziert, so daB die Produktion trotz der Verschlirfung des Grenzwerts in dem durch die Auflagen eingeschrankten zulassigen Bereich er­folgt. Urn eine unveranderte Ausbringungsmenge zu erzielen, muB die Reduktion der Produktionsgeschwindigkeit jedoch durch eine entsprechende Erhohung der Produktionsdauer im Rahmen der zeitlichen Anpassung ausgeglichen werden.

Liegt das Emissionsminimum hingegen rechts von der kostenminimalen Intensi­tat, so reduziert eine ErhOhung der Produktionsgeschwindigkeit den AusstoB des betrachteten Schadstoffs je Produkteinheit; zur Erzielung einer konstanten Aus­bringungsmenge muS die Produktionsdauer entsprechend verringert werden. Bei­de Anpassungspfade sind nur soweit moglich, wie sie im zulassigen Bereich statt­finden, d.h. nicht durch Beschrankungen bei anderen Faktorarten begrenzt wer­den.

Wie bereits bei der Abgabensteuerung beschrieben, bewirkt auch hier die vorder­griindig zum Zweck der Reduktion der von einer Auflage betroffenen Schad­stoffart durchgefiihrte Verminderung bzw. Erhohung der Produktionsgeschwin­digkeit letztlich eine partielle Substitution des durch die Verschlirfung des Grenzwerts knapper gewordenen Umweltfaktors durch andere Faktorarten. Die bereits an anderer Stelle nachgewiesene Dualitat von Auflagen- und Abgaben-

Page 179: Produktionstheorie ||

168 3. Betriebswirtschaftliche Produktionsfunktionen

steuerung (vgl. STEVEN [1994a], S. 129 ff.) besUitigt sich Smnit auch ffir die Wahl der optimalen Anpassungsform im Rahmen der GUTENBERG-Produktions­funktion.

Bislang wurde von einer Auflage mengenmiilliger Obergrenze fUr die Inan­spruchnahme eines Umweltfaktors wabrend der Planungsperiode ausgegangen. Bei Schadstoffemissionen tritt jedoch vor allem der Fall auf, daB die Auflage als zeitbezogener mittlerer und oberer Konzentrationswert formuliert wird. Eine sol­che Definition findet sich z.B. in der Technischen Anleitung (TA) Luft (vgl. hier­zu SCHLUCHTERMANN I VENTZKE [1993], S. 116 ff.). Wabrend der obere Kon­zentrationswert auch kurzfristig nicht iiberschritten werden darf, gibt der mittlere Konzentrationswert einen Hingerfristig einzuhaltenden Durchschnittswert an, um den die Emissionen schwanken diirfen, z.B. einen Jahresmittelwert.

Bei zeitbezogenen Emissionsgrenzen ist die stiickkostenminimale IntensWit im­mer dann zuUissig, wenn sie zu Emissionen unterhalb des mittleren Konzentra­tionswertes e fiihrt; sie ist unzuUissig, wenn der obere Konzentrationswert emax

iiberschritten wird. Liegt die Emission bei der stiickkostenminimalen Intensiilit d opt zwischen dem mittleren und dem oberen Konzentrationswert, so darf diese IntensiUit nur insoweit genutzt werden, wie im Zeitablauf durch Nutzung anderer, unterhalb des mittleren Konzentrationswertes liegender Intensitaten, z.B. von d-, ffir einen Ausgleich gesorgt wird. Eine solche Situation ist in Abbildung 66 fUr

eine linksminimale Schadstoffart dargestellt.

t max ----1----:-- --1- - - - ~ x = dmaxtmax

I I I I I I I I I I I I I I I I I I

d 0 dmin d- d(e) dopt d (emax) d max

Abb. 66: Zeitbezogene Emissionsgrenze

Page 180: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 169

Bei einem konvexen, u-formigen Stiickkostenverlauf wird jedoch eine so1che Konvexkombination aus der kostenminimalen IntensiUit doPt und einer - je nach Lage des Minimums der von dem Grenzwert betroffenen Emission - links oder rechts davon liegenden Intensimt, z.B. d-, durch die kontinuierliche Nutzung der den Grenzwert gerade einhaltenden Intensimt d(e) dominiert, vgl. Abbildung 67.

k(d)

d o

Abb. 67: Kostenwirkungen des Intensimtssplitting

Ein Intensitiitssplitting zum Zweck der Einhaltung von Emissionsauflagen wird

daher nur in dem MaBe erfolgen, wie es zum Ausgleich unvorhergesehener Uber­schreitungen des mittleren Konzentrationswerts notwendig ist.

3.1.4.3 Recycling

Eine weitergehende Moglichkeit, auf eine Beschrankung der Produktionsmog­lichkeiten durch begrenzte Faktoreinsatzmengen bzw. Entsorgungsmoglichkeiten oder auf Emissionsgrenzwerte zu reagieren, ist das innerbetriebliche Recycling von Stoffen, die zunachst als unerwiinschte Nebenprodukte angesehen wurden. Dabei findet im Gegensatz zu den bisherigen Betrachtungen eine Veriinderung der Technologie statt, da der AufbereitungsprozeB neu installiert werden muB.

Durch die Aufbereitung von unerwiinschten Nebenprodukten lassen sich einer­seits knappe Entsorgungsmoglichkeiten oder rigide Grenzwerte lockem, auf der anderen Seite konnen die rezyklierten Sekundarrohstoffe knappe Einsatzfaktoren substituieren. Es ergibt sich ein Kapazitiitserweiterungseffekt, der darin zum

Page 181: Produktionstheorie ||

170 3. Betriebswirtschaftliche Produktionsfunktionen

Ausdruck kommt, daB sich die betroffenen Restriktionen nach auGen verschieben. Durch diesen Effekt wird bewirkt, daB einzelne Anpassungsformen Hinger zuUis­sig sind und die maximal erzielbare Produktionsmenge groBer ist. Weiter treten durch das Recycling Kosteneinsparungen bei der Beschaffung von Primarrohstof­fen und bei der Entsorgung der Nebenprodukte auf, wodurch sich eine andere kostenminimale Intensitat ergeben kann (vgl. DINKELBACH / PIRo [1990], S. 700 ff.).

In Abbildung 68 ist dargestellt, wie sich die Technologie aus Abbildung 64 durch die Moglichkeit des Recycling verandert. Die durch den Kapazitatserweiterungs­effekt ausgelOste Verschiebung von Restriktionen nach auBen ist gepunktet ein­gezeichnet, die Veranderung beim optimalen Anpassungspfad ist grau wiederge­geben. Dabei wurde zusatzlich beriicksichtigt, daB sich die stiickkostenminimale Intensitat durch die Einsparung von Primarrohstoffen verschieben kann.

t

t max ---------"1 - - ! -/ /~

// " ~/' 1'---' 't ,. ,.

~;

1

1

1

1

1

1

o d dopt dopt min neu alt

Xmax __ ----41~~.~\,\., - i

/7"",,-.--_..]

1

Abb. 68: Produktionsmoglichkeiten bei Recycling

d

Es zeigt sich, daB im zugrunde liegenden Beispiel die erste Restriktion, die zuvor den Bereich rein zeitlicher Anpassung nach oben beschrankte, nicht mehr bin­dend ist. Weiter liegt die maximal erzielbare Ausbringungsmenge aufgrund des Kapazitatserweiterungseffekts nun oberhalb von xmax ohne Beriicksichtigung von Recycling.

Page 182: Produktionstheorie ||

3.1 Die GUTENBERG-Produktionsfunktion 171

3.1.4.4 Ergebnisse

Die vorliegende Analyse hat gezeigt, daB eine Erweiterung der GUTENBERG­Produktionsfunktion urn die explizite Beriicksichtigung der Nutzung der natiirli­chen Umwelt prinzipiell moglich ist. Insbesondere wurden die optimalen Anpas­sungspfade und die zugehOrigen KostenverHiufe fUr den Fall der Abgaben- und der Auflagensteuerung sowie des Recycling untersucht. Dabei wurde deutlich, daB die als Reaktion auf eine umweltpolitische Regelung ergriffenen Anpas­sungsmaBnahmen in der Regel eine Kombination bzw. Substitution von zeitlicher und intensitatsmaBiger Anpassung erforderlich machen (zu weiteren Betrachtun­gen tiber die Integration von Umweltaspekten in die GUTENBERG-Produktions­funktion vgL z.B. VENlZKE [1994]; BOGASCHEWSKY [1995], S. 140 ff.).

Die vorstehenden Uberlegungen sind nicht auf die Beriicksichtigung von Re­striktionen aus dem Umweltschutzbereich beschrankt, sondern gelten auch fUr andere Einschrlinkungen des betrleblichen Entscheidungsfeldes. So ftihrt - analog zur Abgabensteuerung fUr die Inanspruchnahme von Umweltgtitern - eine Veriin­de rung des Preisverhiiltnisses der Einsatzfaktoren tiber die Verschiebung der stiickkostenminimalen Intensitat zu den beschriebenen Anpassungsprozessen. Durch die Kombination von zeitlicher und intensitatsmliBiger Anpassung wird eine Substitution der teurer gewordenen Einsatzfaktoren durch relativ preisgiin­stigere Einsatzfaktoren ausgelost, d.h. im Rahmen der durch die Beschrlinkung des zulassigen Bereichs der Anpassungsformen gegebenen Grenzen findet ein Ubergang zu der durch das veranderte Preisverhaltnis bestimmten neuen Mini­malkostenkombination statt.

Die bei der Auflagensteuerung von Umweltgtitern beschriebenen Effekte lassen sich ebenso bei anderen mengenmiij3igen Beschriinkungen der zur Verftigung ste­henden Einsatzfaktoren beobachten, z.B. bei Materialengpassen in Form von ein­geschrankten Beschaffungsmoglichkeiten bei Werkstoffen oder kurzfristigen Lie­ferengpassen (vgL hierzu nochmals VON ZWEHL/ BRINK [1994]). Rier kommt es - im Rahmen der Zulassigkeit der verschiedenen Anpassungsformen - zu einer solchen Veranderung der Produktionsgeschwindigkeit, daB sich der Produktions­koeffizient des knappen Einsatzfaktors reduziert und dadurch mit dem gegebenen Faktorbestand die Erzeugung einer groBeren Ausbringungsmenge moglich wird. SolI trotz verringerter Menge eines Einsatzfaktors, z.B. durch Verlust von ftir die Produktion vorgesehenen Lagerbestanden, die Produktion in gleicher Rohe auf­rechterhalten werden, so findet auch hier eine Substitution von zeitlicher und in­tensitatsmliBiger Anpassung statt. Eine ErhOhung bzw. Verringerung der Produk-

Page 183: Produktionstheorie ||

172 3. Betriebswirtschaftliche Produktionsfunktionen

tionsgeschwindigkeit wird durch eine kUrzere bzw. langere Maschinenlaufzeit ausgeglichen. Als Sekundareffekt resultiert aus der veranderten Fahrweise der Betriebsmittel wiederum eine Substitution der betroffenen Verbrauchsfaktoren; die verringerte Inanspruchnahme des knappen Faktors wird durch eine hahere Einsatzmenge der weiterhin in beliebigen Mengen beschaffbaren Faktoren kom­pensiert.

3.1.5 Beurteilung der GUTENBERG-Produktionsfunktion

Bei der GUTENBERG-Produktionsfunktion handelt es sich um eine stark an den technischen Grundlagen der Produktion orientierte Darstellung der theoretischen Zusammenhange des betrieblichen Transformationsprozesses und der damit ver­bundenen Kosten. Ausgehend von den eingangs genannten Kritikpunkten an den ertragsgesetzlichen Produktionsfunktionen wird hier explizit zwischen den ver­schiedenen Arten von Einsatzfaktoren unterschieden; dabei stehen die Betriebs­mittel als Trager der technischen Eigenschaften des Produktionsprozesses im Mittelpunkt der Betrachtungen.

Die Produktionsfunktion als unmittelbare Beziehung von Faktoreinsatz- und Ausbringungsmengen wird durch eine mittelbare Sichtweise ersetzt: Eine Veran­derung der Ausbringungsmenge wird nicht allein durch eine Veranderung der Faktoreinsatzmengen ausgelast, sondern erfordert in erster Linie eine Anpassung der drei die Betriebsweise der Anlagen bestimmenden Parameter Einsatzzeit, Ma­schinenzahl und Produktionsgeschwindigkeit. Wahrend die zeitliche und die quantitative Anpassung bedeuten, daB die Produktion mit einem bestimmten Pro­duktionsprozeB durchgefiihrt wird, sind bei der intensitatsmaBigen Anpassung mit einem Betriebsmittel mehrere Produktionsprozesse mit unterschiedlichen Produktionskoeffizienten und Faktoreinsatzmengenverhaltnissen verbunden.

Trotz weitgehend limitationaler Beziehungen zwischen den an der Produktion beteiligten Giitern ergeben sich aufgrund der Substitutionalitat der Anpassungs­formen bei der GUTENBERG-Produktionsfunktion Bereiche, in denen sich bei Herstellung einer bestimmten Ausbringungsmenge auch Verbrauchsfaktoren ge­geneinander austauschen lassen (vgl. hierzu insbesondere KNOLMAYER [1983]). Die Faktorsubstitution wird - ahnlich wie bei der linearen Aktivitatsanalyse -durch die ProzeBsubstitution eridart, jedoch wird hier der wesentlich realistische­re kontinuierliche Wechsel zwischen den durch eine Verbrauchsfunktion be­schriebenen Produktionsprozessen im Rahmen der intensitatsmaBigen Anpassung zugrunde gelegt.

Page 184: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 173

Die vorstehenden Betrachtungen haben sich im wesentlichen auf die Herstellung eines Produkts in einer Produktionsstelle, meist sogar mit einer einzigen Maschi­ne, bezogen. Die hergeleiteten Aussagen und Ergebnisse behalten jedoch ihre Gtiltigkeit, wenn eine Aggregation der einzelnen Produktionsstellen zum Ge­samtbetrieb vorgenommen oder mehr als eine Produktart betrachtet wird, ledig­lich die formale Darstellung wird aufwendiger (vgl. zum Mehrproduktfall z.B. KlliJER [1958], S. 65 ff; KISTNER [1993a], S. 181 ff.; SCHWEITZER I KUPPER [1997], S. 114 ff.).

Weiter handelt es sich urn eine auf einen kurzen Zeitraum bezogene Betrachtung; denn es werden die Anpassungsformen und ihre Kostenverliiufe in Abhangigkeit von der jeweils geltenden z-Situation analysiert. Inwieweit sie sich durch eine Gestaltung der z-Situation beeinflussen lieBen, wird hingegen nicht untersucht. Derartige Uberlegungen werden im vierten Kapitel im Zusammenhang mit den dynamischen Produktionsfunktionen aufgegriffen.

3.2 Die HEINEN-Produktionsfunktion Die 1965 von EDMUND HEINEN vorgestellte Produktionsfunktion vom Typ C setzt die von GUTENBERG eingeleitete Tendenz zur besseren betriebswirtschaftlichen Fundierung und stiirkeren Detaillierung der Darstellung in der Produktionstheorie fort. Sie geht ebenfalls von einer differenzierten Behandlung der verschiedenen Gruppen von Produktionsfaktoren sowie von einer Betrachtung der Produktions­verhiiltnisse am einzelnen Betriebsmittel mit Hilfe von technisch fundierten Ver­brauchsfunktionen aus, nimmt jedoch eine zusiitzliche Verfeinerung und Erweite­rung der Darstellung vor. Dadurch solI einerseits eine noch bessere Realitiitsniihe, andererseits eine groBere Allgemeingfiltigkeit der Abbildung erreicht werden.

Der Grundgedanke HEINENs ist die Aufspaltung des Produktionsgeschehens in kleinste Teileinheiten, die getrennt modelliert und analysiert werden. Diese Ele­mentarkombinationen sind dadurch gekennzeichnet, daB sich eindeutige Bezie­hungen zwischen der technisch-physikalischen Leistung und der okonomischen Leistung der Betriebsmittel herstellen lassen. 1m Mittelpunkt der Analyse stehen dabei die Verbrauchsmengen der Einsatzfaktoren wiihrend der Durchftihrung ei­ner Elementarkombination. Da sich die gesamte Ausbringungsmenge in einem bestimmten Zeitabschnitt aus der wiederholten Ausftihrung einer oder mehrerer Elementarkombinationen ergibt, kann man den dafiir insgesamt erforderlichen Faktoreinsatz mit Hilfe von Wiederholungsfunktionen ermitteln, die die Hiiufig­keit angeben, mit der die an der Produktion beteiligten Elementarkombinationen zur Herstellung dieser Ausbringungsmenge durchgeftihrt werden mtissen. Somit

Page 185: Produktionstheorie ||

174 3. Betriebswirtschaftliche Produktionsfunktionen

Hillt sich das gesamte Produktionsgeschehen auf der Basis von Elementarkombi­nationen und Wiederholungsfunktionen beschreiben.

1m folgenden wird zunachst in Abschnitt 3.2.1 auf das ffir die HEINEN­Produktionsfunktion zentrale Konzept der Elementarkombination genauer einge­gangen, anschlieBend werden in Abschnitt 3.2.2 die Bestimmung des Faktorver­brauchs bei einer Elementarkombination und in Abschnitt 3.2.3 die Wiederho­lungsfunktionen ffir unterschiedliche Typen von Elementarkombinationen behan­delt. SchlieBlich wird in Abschnitt 3.2.4 gezeigt, wie sich die vorstehenden Ubedegungen zu einer umfassenden Produktionsfunktion des Betriebs verbinden lassen und wie sich daraus die Kostenfunktion ableiten laBt. Abschnitt 3.2.5 nimmt eine abschlieBende Beurteilung des HEINENschen Ansatzes vor.

3.2.1 Das Konzept der Elementarkombination

3.2.1.1 Begriffsbestimmungen

Der Ausgangspunkt der HEINEN-Produktionsfunktion ist eine sehr detaillierte und dadurch recht exakte Erfassung der einzelnen Vorgange wahrend der Durchfiih­rung der Produktion. Durch die Einfiihrung der Elementarkombination als klein­ster Betrachtungseinheit laBt sich der Zusammenhang zwischen der Leistungsab­gabe eines Betriebsmittels bei der Produktion und dem dafiir erforderlichen Ein­satz an Produktionsfaktoren, insbesondere an Betriebsstoffen, mit groBer Genau­igkeit darstellen (vgl. zum folgenden HEINEN [1983], S. 244 ff.). Bei der Ermitt­lung des Faktoreinsatzes wird zwischen zwei Betrachtungsebenen unterschieden:

• Die technische Verbrauchsfunktion beschreibt den Zusammenhang zwischen dem Faktoreinsatz und der als Potentialfaktorleistung bezeichneten technisch­physikalischen Leistung. Diese wird in physikalischen GroBen gemessen, z.B. PS, kmIh, kWh .

• Die okonomische Verbrauchsfunktion gibt den Faktoreinsatz in Abhangigkeit von der als Kombinationsleistung bezeichneten okonomischen Leistung, d.h. der Ausbringungsmenge, an. 1

Anrnerkung: HEINEN verwendet den Begriff "Verbrauchsfunktion" sowohl fUr den Fak­toreinsatz je Produkteinheit als auch fUr den gesarnten Faktoreinsatz in Abhiingigkeit von der Ausbringung, der bislang als "Faktoreinsatzfunktion" bezeichnet wurde. Urn Mi6ver­stiindnisse auszuschlie6en, wird irn folgenden soweit wie rnoglich die explizite Unterschei­dung zwischen Verbrauchs- und Faktoreinsatzfunktion eingehalten. Lediglich an Stellen, an denen die HEINEN'sche Begriffsbildung eindeutig ist oder zu feststehenden Begriffen gefUhrt hat, wird dieser gefolgt.

Page 186: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 175

Zwar ist ffir betriebswirtschaftliche Betrachtungen lediglich die okonomische Verbrauchsfunktion als Mengengeriist der Kosten relevant, zu ihrer Herleitung bedarf es jedoch zunlichst einer Erfassung und Analyse der technischen Grundla­gen der Produktion. AnschlieBend ist eine Transformation der technischen Zu­sammenhlinge in die okonomisch relevanten GroBen erforderlich.

Wlihrend GUTENBERG noch von einer direkt proportionalen Beziehung zwischen der technischen Leistung als AusmaB der Nutzung insbesondere der intensitlits­mliBigen Anpassung und der okonomischen Leistung ausgeht, halt HEINEN eine differenziertere Betrachtung ffir erforderlich. Er berlicksichtigt explizit, daB sich der ProduktionsprozeB aus verschiedenen Phasen zusammensetzt, in denen unter­schiedliche GesetzmliBigkeiten gelten. So ist z.B. zwischen Anlauf-, Bearbei­tungs-, Leerlauf- und Bremsphasen zu unterscheiden, in denen offensichtlich die technische Leistung, die Faktoreinsatzmengen und die zugehorigen Ausbrin­gungsmengen stark schwanken.

Urn dennoch zu einer eindeutigen Darstellung zu gelangen, wird daher der Pro­duktionsprozeB so lange in immer feinere Betrachtungseinheiten zerlegt, bis sich die Beziehungen zwischen technischer und okonomischer Leistung jeweils mit hinreichender Genauigkeit abbilden lassen. Diese Teileinheiten werden als Ele­mentarkombinationen bezeichnet. Eine Elementarkombination ist somit nicht durch empirische Tatbestlinde eindeutig vorgegeben, sondem stellt ein gedankli­ches Konstrukt dar. Der Umfang der einzelnen Elementarkombinationen bzw. der Feinheitsgrad, bis zu dem die Aufspaltung des Produktionsgeschehens erfolgt, hlingt einerseits von den technischen Gegebenheiten, andererseits aber auch von dem okonomischen Erkenntnisinteresse ab, so daB sich ffir einen bestimmten ProduktionsprozeB durchaus sehr unterschiedliche Darstellungsweisen ergeben konnen.

Diese pragmatische Definition der Elementarkombination erlaubt es, ihre Ab­grenzung in Abhlingigkeit von den Zielen der jeweiligen Untersuchung vorzu­nehmen. 1m konkreten Einzelfall kann es durchaus sinnvoll sein, wie bei der GUTENBERG-Produktionsfunktion die Vorglinge in einer Produktionsstelle als Elementarkombination anzusehen. Der wesentliche Unterschied zwischen den beiden Anslitzen besteht darin, daB die HEINEN-Produktionsfunktion durch die prinzipielle Moglichkeit einer exakteren Abbildung eine grofJere Realitiitsniihe beanspruchen kann.

Page 187: Produktionstheorie ||

176 3. Betriebswirtschaftliche Produktionsfunktionen

3.2.1.2 Typen von Elementarkombinationen

Entsprechend den vielfaItigen realen Produktionsbedingungen lassen sich ver­schiedene Typen von Elementarkombinationen abgrenzen, die unterschiedliche Anforderungen an die Darstellung und Analyse stellen (vgl. HEINEN [1983], S. 260 ff.):

(I) Bine Orientierung an der Inputseite des Produktionsprozesses bezieht sich auf das Einsatzmengenverhiiltnis der fUr eine Elementarkombination benotigten Produktionsfaktoren. Sie fiihrt zu der Unterscheidung von limitationalen und substitutionalen Elementarkombinationen:

• Bei einer limitationalen Elementarkombination stehen die Einsatzfaktoren in einem festen, durch technische Gegebenheiten determinierten Verhiilt­nis zueinander, wie es z.B. in der LEONTIEFF-Produktionsfunktion und in der GUTENBERG-Produktionsfunktion bei zeitlicher oder quantitativer An­passung unterstellt wird.

• Durch substitutionale Elementarkombinationen werden Produktionsbezie­hungen beschrieben, bei denen die Einsatzmengenverhaltnisse der Pro­duktionsfaktoren (in bestimmten Grenzen) variiert werden konnen. Derar­tige Beziehungen lassen sich z.B. durch ertragsgesetzliche Produktions­funktionen modellieren.

(2) Die Betrachtung der Outputseite des Produktionsprozesses orientiert sich an der Moglichkeit zur Variation der mit einer Elementarkombination erzeugten Ausbringungsmenge. Es ergibt sich eine Einteilung in outputfixe und output­variable Elementarkombinationen:

• Eine outputfixe Elementarkombination liegt vor, wenn bei jeder Durchfiih­rung eine bestimmte, konstante Ausbringungsmenge erzeugt wird. Dies ist insbesondere in der mechanischen Fertigung in der Regel der Fall: Jede Durchfiihrung eines Bearbeitungs- oder Montagevorgangs fiihrt zu einem genau definierten Ergebnis, z.B. zu einem Schnitt bestimmter Lange oder zur Fertigstellung einer bestimmten Baugruppe.

• Bei einer outputvariablen Elementarkombination hingegen Hillt sich die Ausbringungsmenge innerhalb der technisch zuIassigen Grenzen variieren. Bin typisches Beispiel ffir variable Ausbringungsmengen ist die Chargen­fertigung, bei der die in einem Arbeitsgang bearbeitete Menge unter­schiedlich groG sein kann. Beschreibt man z.B. den Brennvorgang in ei­nem Of en als eine Elementarkombination, so ist die mogliche Ausbrin-

Page 188: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 177

gungsmenge zwar nach oben durch das Fassungsvermogen des Of ens de­terminiert, kann jedoch bei Verzicht auf Vollauslastung beliebige kleinere Werte annehmen.

Die Kuppelproduktion laBt sich in diesem Zusammenhang wie folgt einord­nen: Bei starrer Kopplung der Kuppelprodukte kann sich das Produktbiindel lediglich als ganzes outputfix oder outputvariabel verhalten; bei elastischer Kuppelproduktion hingegen ist es moglich, daB trotz konstanter Ausbrin­gungsmenge des Produktbiindels das MengenverhaItnis der einzelnen Kup­pelprodukte variiert.

Durch Kombination der input- und outputseitigen Kriterien gelangt man zu den vier in Abbildung 69 dargestellten Typen von Elementarkombinationen, die sich vor allem im Hinblick auf die bei der Hedeitung des Faktoreinsatzes zu beriick­sichtigenden Aktionsparameter unterscheiden.

Outputseite

fix variabel

konstante outputfix outputvariabel

Input- VerhaItnisse limitational limitational

seite variable outputfix outputvariabel

VerhaItnisse substitutional substitutional

Abb. 69: Typen von primaren Elementarkombinationen

Da bei der industriellen Produktion die durch Fettdruck hervorgehobene output­fixe, limitationale Elementarkombination als der bei weitem vorherrschende Fall anzusehen ist, wird bei den weiteren Ausfiihrungen in erster Linie von diesem Typ ausgegangen. Die vorstehende Systematik macht deutlich, daB die HEINEN­

Produktionsfunktion offen ist fUr die Abbildung sehr unterschiedlicher Auspra­gungen des betrieblichen Kombinationsprozesses und somit ein weites Einsatz­feld abdecken kann.

Eine weitere KlassifIkationsmoglichkeit ergibt sich, wenn man die Abhangigkeit der Anzahl der Durchfiihrungen einer Elementarkombination von der geforderten Ausbringungsmenge betrachtet (vgl. HEINEN [1983], S. 285):

Page 189: Produktionstheorie ||

178 3. Betriebswirtschaftliche Produktionsfunktionen

• Bei einer primiiren Elementarkombination hangt die Anzahl der Wiederholun­gen direkt von der Ausbringungsmenge abo Insbesondere Bearbeitungsvorgan­ge, bei denen der Produktionsablauf an jedem Werkstiick die Durchfiihrung einer Elementarkombination erfordert, gehoren zu diesem Typ.

• Die Wiederholung einer sekundiiren Elementarkombination hangt nur mittel­bar, und zwar in der Regel tiber die Auflagengro8e, von der Ausbringungs­menge abo Hierzu ziihlen z.B. Umriist- und Anlaufvorgange bei den Betriebs­mitteln, Beschaffungsvorgange oder Tatigkeiten der Arbeitsvorbereitung.

• Bei tertiiiren Elementarkombinationen besteht kein eindeutig erfaBbarer Bezug zur Ausbringungsmenge. Es handelt sich dabei urn Vorgange wie Heizung, Reinigung oder VerwaItung, die sich lediglich in Abhangigkeit vom Zeitablauf erfassen lassen. Auch das arbeitsmgliche Hochfahren der Anlagen stellt eine terti are Elementarkombination dar.

Diese Abhangigkeiten der Elementarkombinationen von der Ausbringungsmenge werden in Abschnitt 3.2.3 im Zusammenhang mit der Wiederholungsfunktion eingehend anaIysiert.

3.2.2 Die ErkUirung des Faktorverbrauchs einer Elementarkombination

Urn den Verbrauch an Produktionsfaktoren fUr die Herstellung einer bestimmten Ausbringungsmenge zu erklaren, ist es notwendig, zunachst den Faktorverbrauch einer einzelnen Elementarkombination abzubilden. Dabei ist aus systematischen Grunden zwischen Repetierfaktoren, die bei der Produktion direkt oder indirekt in die Produkte eingehen, und PotentiaIfaktoren, die ihre Leistung tiber einen lan­geren Zeitraum abgeben, zu unterscheiden.

3.2.2.1 Verbrauch an Repetierfaktoren

Zu den Repetieifaktoren ziihlen mit den Werkstoffen, Hilfsstoffen und Betriebs­stoffen aIle Gtiter, die im Produktionsproze8 verbraucht werden und daher regel­maBig neu beschafft werden mtissen. Bei diesen Stoffen ist es gerechtfertigt, von einer beliebigen Teilbarkeit des Faktoreinsatzes auszugehen, da sich die durchge­setzten Mengen in der Regel deutlich von eins unterscheiden.

Am einfachsten last sich der Einsatz an Hilfsstoffen und Werkstoffen erfassen, die sich dadurch charakterisieren lassen, daB sie direkt in die Produkte eingehen. Ihr

Page 190: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 179

Verbrauch hangt im wesentlichen von der hergestellten Ausbringungsmenge ab; er ergibt sich aus technischen Produktionsunterlagen wie StUcklisten, Konstrukti­onsplanen usw. Bezeichnet man mit i = 1, ... ,n! die verschiedenen (Hilfs- und) Werkstoffe und mit j = 1, ... , m die unterschiedlichen Elementarkombinationen, die an der Herstellung des Endprodukts auf dem Betriebsmittel k, k = 1, ... ,1 be­teiligt sind, so ist der Werkstoffeinsatz 'ijk eine eindeutige Funktion der Ausbrin­gungsmenge x und laBt sich mit Hilfe einer Verbrauchs- bzw. Faktoreinsatzfunk­tion in der folgenden Form erfassen:

'ijk =fijk(X) i=I, ... ,n}; j=I, ... ,m; k=I, ... ,1

Bei den in der Fertigungsindustrie vorherrschenden outputfixen, limitationalen Elementarkombinationen verhiilt sich der Werkstoffverbrauch in der Regel pro­portional zur Ausbringungsmenge, so daB fUr eine Durchfiihrung der Elementar­kombination gilt:

'ijk = const.

Der Verbrauch an BetriebsstoJfen i = n} + 1, ... , n hangt hingegen nur indirekt von der Ausbringungsmenge ab, entscheidende EinfluBgroBen sind vielmehr die Aus­stattung und die Fahrweise der Betriebsmittel, die sich mit Hilfe von technischen Parametem beschreiben lassen. Eine technische Verbrauchsfunktion gibt die Ab­hangigkeit des Verbrauchs des Betriebsstoffs i von den wesentlichen technischen Daten des Betriebsmittels an:

'ijk =fijk(Z},Z2,Z3,···; u},u2,u3,···; 1},12 ,13 ,···) i=n} +1, ... ,n;

j = 1, ... ,m; k = 1, ... ,1

Dabei ist zwischen drei Gruppen von EinfluBgroBen zu unterscheiden:

• Die erste Gruppe von Parametem steht fUr die bereits bei GUTENBERG als z­Situation bezeichneten technischen Eigenschaften z} ,Z2 ,z3, ... des Betriebs­mittels, die bei seiner Konstruktion eindeutig festgelegt werden und keinerlei spateren Anderungen unterliegen. Beispiele hierfiir sind der Hubraum eines Motors oder die bei einem Of en benotigte Brennstoffart (vgl. hierzu nochmals Abschnitt 3.1.1.1).

• Davon zu unterscheiden sind technische Eigenschaften, die explizit von Zeit zu Zeit einer Anderung unterliegen, z.B. die aktuelle Einstellung und Werk­zeugausstattung einer Mehrzweckmaschine, die durch Umriistvorgange gean­dert werden kann. Insbesondere bei flexiblen Fertigungsanlagen kommt es re­gelmaBig bei einem Wechsel der bearbeiteten Produktart zu Veranderungen

Page 191: Produktionstheorie ||

180 3. Betriebswirtschaftliche Produktionsfunktionen

bei dieser als u-Situation bezeichneten aktuellen Einstellung technischer Para­meter, die durch die GroBen uI' u2 ' u3 ,... in der technischen Verbrauchsfunk­tion bezeichnet werden.

• SchlieBlich gibt es eine Reihe von technischen Daten 11 ,12 ,13"", die sich beim Betrieb einer Anlage laufend andem; diese werden von HEINEN als .e -Situa­tion bezeichnet. Neben EinfluBgroBen wie Druck- und TemperaturverhiUtnis­sen oder Drehzahlen gehOrt insbesondere die dem Betriebsmittel abverlangte technische Leistung zu dieser Gruppe; sie bestimmt den Faktorverbrauch ganz wesentlich.

Die soeben als wichtigste EinfluBgroBe auf den Faktorverbrauch identifizierte technische Leistung Ljk eines Betriebsmittels k wlihrend der Durchfiihrung einer Elementarkombination j entspricht der Intensitat d im Ansatz von GUTENBERG. Sie ist hier jedoch nicht konstant, sondem standigen Anderungen im Zeitablauf unterworfen. Die technische Leistung wird wie in der Physik als Arbeit pro Zeiteinheit definiert:

j = l, ... ,m; k = 1, ... ,1

Andert sich wlihrend der betrachteten Zeitspanne die Intensitat der Leistungsab­gabe, so ist die Betrachtung von DurchschnittsgroBen nicht mehr ausreichend, sondem es ist auf die Momentanleistung abzustellen, die sich als Grenzwert des oben angegebenen Differenzenquotienten ffir Il. t ~ ° ergibt:

Il.A·k dA'k L'k = lim __ 1_ = __ 1_ 1 .i t-+O Il. t dt

j=l, ... ,m; k=l, ... ,1

Die wlihrend eines bestimmten Zeitintervalls [0, t] am Betriebsmittel k bei der

Elementarkombination j insgesamt geleistete Arbeit Ajk und die mittlere Lei­

stung Ljk wlihrend dieses Zeitintervalls lassen sich dann wie folgt berechnen:

t

Ajk = f Ljk dt o

- 1ft Ajk Ljk =t Ljk dt =-t-

o

j = 1, ... ,m; k = 1, ... ,1

j = 1, ... ,m; k = 1, ... ,1

Bei konstanter z-Situation und u-Situation des Betriebsmittels k besteht ffir die Elementarkombination j ein eindeutiger Zusammenhang zwischen erbrachter

Page 192: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 181

technischer Leistung und erforderlichem Faktoreinsatz. Daraus laBt sich die fol­gende technische Verbrauchsfunktion ffir den Betriebsstoff i herleiten, die den Faktorverbrauch je physikalischer Arbeitseinheit angibt:

i=nl +1, ... ,n; j=l, ... ,m; k=I, ... ,1

Den ffir okonomische Zwecke bedeutenderen Faktorverbrauch je Zeiteinheit er­halt man in Abhangigkeit von der durchschnittlich erbrachten Leistung als:

'ijk (-) -t- = iijk Ljk i = nl + 1, ... ,n; j = 1, ... ,m; k = 1, ... ,1

Typischerweise hat eine so1che technische Verbrauchsfunktion - die eigentlich eine Faktoreinsatzfunktion ist - einen s-fOrmigen Verlauf, wie er in Abbildung 70 dargestellt ist.

.Jil t

L

Abb. 70: Technische Verbrauchsfunktion

Ebenso wie bei der Leistung ist es ffir die Analyse des Faktorverbrauchs bei im Zeitablauf schwankender Leistungsabgabe sinnvoll, anstelle des durchschnittli­chen Verbrauchs den Momentanverbrauch zu betrachten, der sich als Grenzwert ffir A t -7 0 ergibt:

A r.··k dr.··k lim __ IJ_ = _IJ_

A t-+O At dt i=nl +1, ... ,n; j=I, ... ,m; k=I, ... ,1

Betrachtet man anstelle der DurchschnittsgroBen die Beziehung von Momentan­verbrauch und Momentanleistung, so erhalt man eine technische Verbrauchs-

Page 193: Produktionstheorie ||

182 3. Betriebswirtschaftliche Produktionsfunktionen

funktion, die tatsachlich in jedem Zeitpunkt einen eindeutigen Zusammenhang von Faktorverbrauch und Betriebsmittelleistung herstellt:

d'ijk _ (d A jk ) dr- lijk ~ i=nl +l, ... ,n; j=I, ... ,m; k=I, ... ,1

Zur Veranschaulichung fiihrt HEINEN ([1983], S. 250) das Beispiel eines Kraft­fahrzeugmotors an, dessen Kraftstoffverbrauch je Leistungseinheit (gemessen in PS bzw. W) in jedem Moment von der Drehzahl abhangt, bei der die Leistung erbracht wird. Da sich diese Drehzahl typischerweise in Abhangigkeit von der schwankenden Fahrgeschwindigkeit standig andert, ist die Betrachtung von Mo­mentanleistung und Momentanverbrauch das theoretisch richtige Konzept zur exakten Abbildung des Produktionsgeschehens.

Um nun eine Verbindung zwischen technischer und okonomischer Leistung her­zustellen, muG liber den ffir die Leistungserstellung bei einer Elementarkombina­tion benotigten Zeitabschnitt beobachtet werden, we1che Momentanleistungen dem Betriebsmittel in jedem einzelnen Zeitpunkt abverlangt werden. Diese Lei­stungsabgabe des Betriebsmittels im Zeitablauf HiBt sich in Form eines Zeitbela­stungsbilds darstellen. In Abbildung 71 wird die Momentanleistung eines Aggre­gates wiihrend einer Elementarkombination, bei der nacheinander drei gleicharti­ge Bearbeitungen an einem Werksmck vorgenommen werden und die wiihrend der Zeitspanne von 0 bis t j durchgeflihrt wird, in Abhangigkeit von der Zeit ver­anschaulicht. Beispiele ffir eine so1che Elementarkombination sind das Bohren von drei gleichartigen Lochem oder das Nahen von drei Nahten an einem Textil­stlick.

In dieser Darstellung lassen sich innerhalb der Elementarkombination verschie­dene Phasen der Leistungserstellung unterscheiden, zwischen denen sich die Lei­stungsabgabe des Betriebsmittels in charakteristischer Weise andert:

• Am Beginn und am Ende des Kurvenverlaufs befindet sich eine Still­standsphase. Da eine stillstehende Maschine keine Leistungen erbringt, hat die Momentanleistung L in diesen Phasen den Wert Null.

• Die erste Phase mit positiver Momentanleistung ist die Anlaufphase, in der noch keine Bearbeitung stattfindet, sondem das Betriebsmittel in den Zustand der Betriebsbereitschaft versetzt wird. Das Anlassen und Hochfahren einer Maschine kann zu erheblichen Spitzenbelastungen flihren, wenn z.B. Trag­heitskriifte und Reibungswiderstande zu liberwinden sind.

Page 194: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 183

Abb. 71: Zeitbelastungsbild

• Die verschiedenen Bearbeitungsphasen weisen untereinander einen ahnlichen Verlauf auf, da es sich urn gleichartige Verrichtungen handelt. Die Schwan­kungen der Momentanleistung in diesen Phasen lassen sich durch prozeBtech­nische oder materialbedingte Eigenschaften erkHiren, z.B. Schnittkraftschwan­kungen in der spanabhebenden Bearbeitung.

• Zwischen jeweils zwei Bearbeitungsphasen liegt eine Leerlaufphase, wi:ihrend der z.B. das Einrichten des Betriebsmittels oder des Werkstiicks ffir die nach­ste Bearbeitung erfolgt. Die Leistungsabgabe der betrachteten Maschine liegt ungefi:ihr auf dem Niveau der Bearbeitungsphasen, da sich angesichts der langwierigen Anlaufphase ein Herunterfahren oder Ausschalten nicht lohnt. Der Belastungsverlauf in diesen Phasen ist gleichmaBig, denn es findet keine Bearbeitung statt.

• Die letzte Phase in der dargestellten Elementarkombination ist die Bremspha­se, in der die Maschine wieder in den Ruhezustand zurUckkehrt. In dieser Pha­se nimmt die Leistungsabgabe rasch abo

Wenn die betrachtete Maschine wi:ihrend der Stillstandsphase im AnschluB an den dargestellten Zyklus auf eine andere Verrichtungsart umgeriistet wird, die einer anderen Elementarkombination entspricht, konnen sich die Zeitbelastungsbilder

Page 195: Produktionstheorie ||

184 3. Betriebswirtschaftliche Produktionsfunktionen

der nachfolgenden Bearbeitungen erheblich von dem bier betrachteten unter­scheiden, denn es liegt eine vedinderte u-Situation vor.

In der dem betrachteten Beispiel zugrunde liegenden Situation wurde es als sinn­voU empfunden, die drei tiber einen gemeinsamen Mascbinenanlauf zusammen­hangenden Bearbeitungen als eine Elementarkombination aufzufassen. SoUte je­doch eine noch detailliertere Betrachtung gewiinscht werden, so lieBe sich auch jede einzelne Phase als separate Elementarkombination beschreiben.

Bei der Bestimmung der Momentanleistung tritt allerdings ein meBtechnisches Problem auf: Die Leistungsabgabe eines Betriebsmittels last sich in der Regel nicht in einem bestimmten Zeitpunkt, sondem lediglich tiber einen Zeitraum ge­wisser Lange bestimmen. So last sich z.B. die Geschwindigkeit eines Fahrzeugs wahrend einer Fahrt mit Hilfe von Fahrtenschreibem erfassen, die Drehzahl einer Maschine mittels DrehzahlmeBgediten usw. Da das Intervall, das der Leistungs­messung zugrunde liegt, zwar fast beliebig, doch nicht unendlich klein gewahlt werden kann, findet in der Praxis letztlich doch wieder eine Betrachtung von Durchschnittsleistungen und -verbriiuchen statt.

Die bei der Ausftihrung einer Bearbeitungsphase am Betriebsmittel k wahrend der Zeit [to, t] aufgewendete Arbeit entspricht wegen

t

Ajk = f Ljk dt to

j = 1, ... ,m; k = 1, ... ,1

der schraffierten Flache unter der in Abbildung 71 dargesteUten Kurve. SoU diese Bearbeitungsphase in einer anderen Zeit voUendet werden, so ist, urn nach wie vor die gleiche Arbeit zu verrichten, fUr t} < t eine Stauchung des entsprechen­den Teils des Zeitbelastungsbilds erforderlich, ftir t2 > t hingegen eine Strek­kung. Dadurch verscbieben sich gleichzeitig die Belastungsspitzen und -taler so­wohl in ihrer absoluten Hohe als auch beztiglich ihrer zeitlichen Lage (vgl. HEINEN [1983], S. 262 f.). Dieser Vorgang ist in Abbildung 72 veranschaulicht.

ledoch ist zu beriicksichtigen, daB zum Erreichen einer hoheren Leistungsinten­sitat eine entsprechend langere Anlauf- und Bremsphase erforderlich ist, so daB ftir die Ausfiihrung der Elementarkombination eine hOhere Gesamtleistung erfor­derlich ist und die Gesamtdauer durchaus langer werden kann. Insgesamt last sich feststeUen, daB ein Zusammenhang zwischen der Dauer einer Elementar­kombination und der dabei erforderlichen Leistung besteht.

Page 196: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 185

Ljk

~------~--~~----~--------~t o

Abb. 72: Zeitbelastungsbilder ffir verschiedene Zeitdauem

Diese Abhangigkeit der Betriebsmittelleistung von der ffir die Durchfiihrung der Elementarkombination j zur Verfiigung stehenden Zeit t jk HiBt sich mit Hilfe einer Belastungsfunktion erfassen:

dAjk L'k =--=/t. (t)

J dt Jk j = l, ... ,m; k = 1, ... ,1

Es wird deutlich, daB bei einer Elementarkombination, obwohl die einzelnen Be­arbeitungsvorgange vorgegeben sind und auch die erwartete Ausbringungsmenge feststeht, durchaus noch Freiheitsgrade bei der konkreten Durchfiihrung der Ta­tigkeiten vorhanden sind. Ahnlich wie bei der GUTENBERG-Produktionsfunktion besteht hier wlihrend der Bearbeitungsphasen eine Substitutionalitat zwischen der eingesetzten Arbeitszeit und der Intensitat der Betriebsmittelnutzung.

Aus der technischen Verbrauchsfunktion und der Zeitbelastungsfunktion HiBt sich die okonomische Verbrauchsfunktion herleiten, die den Zusammenhang zwischen der okonomischen Leistung, d.h. der Ausbringungsmenge pro Zeiteinheit, und den daffir eingesetzten Faktormengen beschreibt. Da die ffir die Durchfiihrung der Elementarkombination erforderliche Leistungsintensitat - wie soeben darge­stellt - von der gewiinschten Zeitdauer der Elementarkombination abhangt, ergibt sich ffir jede Ausfiihrungszeit ein bestimmtes Zeitbelastungsbild. Ordnet man jeder dabei auftretenden Momentanbelastung iiber die technisch determinierte Verbrauchsfunktion ihren Momentanverbrauch zu, so erhaIt man eine Zeitver­brauchsfunktion (vgl. HEINEN [1983], S. 271 f.). Dieser Zusammenbang ist in Abbildung 73 veranschaulicht.

Page 197: Produktionstheorie ||

186

d rijk dt

dAjk dt

3. Betriebswirtschaftliche Produktionsfunktionen

Abb. 73: Herleitung der Zeitverbrauchsfunktion

1m ersten Quadranten ist die Belastungsfunktion dargestellt, im zweiten die tech­nische Verbrauchsfunktion. Durch Spiegelung der Zeitachse im vierten Qua­dranten ergibt sich im dritten Quadranten die gesuchte Zeitverbrauchsfunktion bzw. okonomische Verbrauchsfunktion. Der Verlauf der technischen Verbrauchs­funktion im zweiten Quadranten hiingt dabei von der jeweils geltenden z- und u­Situation des Betriebsmittels abo Die im dritten Quadranten dargestellte Zeitver­brauchsfunktion stellt die Entwicklung des Momentanverbrauchs bei einer be­stimmten Elementarkombination, die in einer vorgegebenen Zeit durchgefiihrt wird, im Zeitablauf dar. Die Flache unter der Funktion gibt den Gesamtverbrauch des betrachteten Betriebsstoffes i ffir die Durchfiihrung der Elementarkombina­tionj am Betriebsmittel k an. Es gelten die folgenden Beziehungen:

dr:·k d/~ = qJit jk (t) i=nl+1, ... ,n; j=l, ... ,m; k=l, ... ,l

Page 198: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 187

tjk

'ijk = J CfJitjk (t) dt i=nl+1, ... ,n; j=l, ... ,m; k=I, ... ,l t=O

Ahnlich wie beim Zeitbelastungsbild hiingt auch das exakte Aussehen des Zeit­verbrauchsbilds von der Zeit ab, wahrend der die Elementarkombination j ausge­fiihrt werden solI. Daher gilt fUr die gesuchte okonomische Verbrauchsfunktion des Betriebsstoffs i:

i=nl+1, ... ,n; j=I, ... ,m; k=I, ... ,l

Diese ausschlieBliche Abhiingigkeit des Faktoreinsatzes von der Ausfiihrungszeit der Elementarkombination gilt allerdings nur fur den Fall einer outputfixen, li­mitationalen Elementarkombination.

Die bisherigen Ausfiihrungen sollen durch das folgende Beispiel veranschaulicht werden:

Die von der betrachteten Maschine abgegebene technische Leistung kann im In­tervall

L E [0,15]

variiert werden. Wahrend der Bearbeitungsphase erfolgt eine gleichmaBige Lei­stungsabgabe mit der eingestellten Intensitat, so daB z.B. bei L = 7,5 in 5 Zeiteinheiten 37,5 Leistungseinheiten abgegeben werden.

In der Anlaufphase kann je Zeiteinheit eine IntensiUitsiinderung urn 3 Leistungs­einheiten erreicht werden:

dL =3 dt

In der Bremsphase gilt entsprechend, daB die IntensiUit je Zeiteinheit urn 5 Lei­stungseinheiten reduziert werden kann:

dL =-5 dt

Urn eine Gesamtleistung von 60 Leistungseinheiten zu erstellen, kann man z.B. die Maschine in einer Zeiteinheit auf die Intensitat L = 3 hochfahren, anschlie­Bend 20 Zeiteinheiten mit dieser Intensitat betreiben und in weiteren 0,6 Zeitein­heiten wieder zurn Stillstand bringen. FUr die Gesamtleistung wurden somit 21,6

Page 199: Produktionstheorie ||

188 3. Betriebswirtschaftliche Produktionsfunktionen

Zeiteinheiten benotigt. Wahlt man die maximale Intensitat von 15 Leistungsein­heiten, so dauert die Anlaufphase 5 Zeiteinheiten, die Bearbeitungsphase 4 Zeiteinheiten und die Bremsphase 3 Zeiteinheiten, insgesamt lieGe sich die ge­wiinschte Leistung also in 12 Zeiteinheiten erstellen. In Abbildung 74 sind die Zeitbelastungsbilder fUr einige ausgewahlte Intensitaten dargestellt.

L

15

10

5

L=3

o ~------------------~----------------~----~ 2 4 6 8 10 12 14 16 18 20 22

Abb. 74: Zeitbelastungsbilder ffir das Beispiel

Dabei wird deutlich, daB sowohl sehr kleine als auch sehr hohe Intensitaten zu langeren Laufzeiten als mittlere Intensitaten fiihren. Die Intensitat, die zur mini­malen Laufzeit ffir das vorgegebene Arbeitsvolumen fiihrt, ergibt sich als Mini­mum der Funktion:

L 60 L t=-+--+-

3 L 5

Sie betragt 10,6 Leistungseinheiten, die zugehorige Laufzeit betragt 11 ,31 Zeiteinheiten.

Die Zeitbelastungsfunktion ffir die Intensitat L = 6 lautet z.B.:

{3t

L(t)= 6 66-5t

fUr 0:$;t:$;2

fUr 2:$;t:$;12

ffir 12:$; t :$; 13,2

Page 200: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 189

Urn von der Zeitbelastungsfunktion zur Zeitverbrauchsfunktion, die den Faktor­verbrauch in jedem Zeitpunkt angibt, zu gelangen, ist die Kenntnis der zeit- und leistungsabhangigen Momentanverbrauchsfunktion des betrachteten Produktions­faktors erforderlich. Diese lautet flir das Beispiel:

dr 1 2 dt = 2L(t) + L(t)

Durch Einsetzen der Zeitbelastungsfunktion und abschnittsweise Integration er­halt man den Faktorverbrauch fur die vorgegebene Leistungsmenge von 60 Lei­stungseinheiten, die in 13,2 Zeiteinheiten mit einer Intensitat von 6 Leistungsein­heiten erzeugt werden:

1~2[1 ] r(60) = ! 2· L(t)2 + L(t) dt

= H~·(3.)2 +3.J d. + 1[~62 +6 J d.+ 13.2[ 1 ]

+ f -.(66-5t)2 +(66-5t) dt 12 2

= [0,5. t 3 + 1,5· t2]~ + [24t];2 + [2244t -167,5t2 +4,16t3]~~.2

= 260,80

Durch Minimierung der Zeitverbrauchsfunktion lieBe sich zusatzlich diejenige Intensitat bzw. Produktionsdauer bestirnrnen, bei der der Faktorverbrauch mini­mal wird.

Wahrend bei einer outputfixen Elementarkombination die Zeitdauer, wahrend der sie durchgeflihrt wird, als einziger Freiheitsgrad auf tritt, stellt bei einer outputva­riabl"en Elementarkombination die wahrend einer Durchflihrung erzeugte Aus­bringungsmenge eine weitere EinfluBgrOBe auf den Verbrauch an Betriebsstoffen dar, denn es lassen sich in einer bestirnrnten Zeit unterschiedliche Ausbrin­gungsmengen herstellen, die dementsprechend unterschiedliche Faktoreinsatz­mengen mit sich bringen. In diesem Fall gilt daher eine erweiterte Verbrauchs­funktion flir Betriebsstoffe, die neben der Zeitdauer der Elementarkombination j ihre Ausbringungsmenge als Entscheidungsparameter enthalt:

Page 201: Produktionstheorie ||

190 3. Betriebswirtschaftliche Produktionsfunktionen

i=nl +1, ... ,n; j=I, ... ,m; k=I, ... ,1

Bei outputfixen, substitutionalen Elementarkombinationen sind mehrere Kombi­nationen der in der u- und .e -Situation festgehaltenen technischen Verfahrensbe­dingungen moglich, urn eine bestimmte Ausbringungsmenge in einer bestimmten Zeit herzustellen. Da jede Einstellung der Verfahrensbedingungen zu einer ande­ren Belastung des Betriebsmittels und damit zu anderen Faktoreinsatzmengen ffihrt, tritt bei diesem Fertigungstyp als zusatzlicher Freiheitsgrad die Verteilung der Aggregatbelastungen hinzu. Die Belastung eines bestimmten Betriebsmittels durch die Elementarkombination hangt neben der Ausfiihrungszeit von den Bela­stungen der anderen beteiligten Betriebsmittel abo Dies Hillt sich durch ein System von Belastungsisoquanten erfassen:

'ijk = dAjk = fijk(dA1 , dA2 , .•. , dAk_1 , dAk+1 , .•• , dAK ,tj ) dt dt dt dt dt dt

Das Zeitbelastungsbild eines bestimmten Aggregats Hillt sich nur dann eindeutig angeben, wenn neben der Ausfiihrungszeit der Elementarkombination die Bela­stungen aller anderen Aggregate feststehen.

Bei outputvariablen, substitutionalen Elementarkombinationen schlieBlich ist in der oben angegebenen Verbrauchsfunktion wiederum die erzeugte Ausbrin­gungsmenge als zusatzlicher Parameter zu beriicksichtigen. Damit entspricht je­der moglichen Kombination von Ausfiihrungszeit und Ausbringungsmenge einer Elementarkombination eine andere Belastungsisoquante (zu den Verbrauchs­funktionen bei diesen drei Typen von Elementarkombinationen vgl. HEINEN

[1983], S. 264 - 271).

3.2.2.2 Verbrauch an Potentialfaktoren

Als Potentialfaktoren werden diejenigen Produktionsfaktoren bezeichnet, die bei der betrieblichen Produktion fiber einen langeren Zeitraum hinweg eingesetzt werden und dabei sukzessiv ihr Leistungspotential an die Produkte abgeben. Hierzu zahlen insbesondere die Betriebsmittel, die einer Abnutzung unterliegen und daher in gewissen Zeitabstanden ersetzt werden miissen, und die Arbeits­krafte, deren Leistungspotential sich in Ruhezeiten wieder regenerieren laBt. Ne­ben der langerfristigen Leistungsabgabe ist ihre Unteilbarkeit ein wesentliches Merkmal der Potentialfaktoren.

Page 202: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 191

Das Problem bei der Bestimmung des Verbrauchs an Potentialfaktoren besteht darin, daB sich ihr Verzehr aus den soeben genannten Grunden nicht exakt mes­sen und somit nur unzureichend der einzelnen Ausbringungseinheit zurechnen Uillt. Daher ist nach Ersatzmafigrofien zu suchen, die den Faktorverzehr im Rah­men der jeweiligen Untersuchung befriedigend abbilden.

• Bei den Betriebsmitteln stellt HEINEN auf die als eine bestimmte Anzahl von Verrichtungen oder von Laufzeitstunden angegebene Totalkapazitiit ab, die durch jede Nutzung im ProduktionsprozeB urn einen bestimmten Teil verrin­gert wird. Da jedoch diese TotalkapaziHit nicht ex ante technisch eindeutig determiniert ist, sondem zum einen durch Wartungs- und ReparaturmaBnah­men nahezu beliebig erhoht werden, zum anderen durch technische oder wirt­schaftliche Obsoleszenz vorzeitig erschOpft sein kann, fiihrt diese Vorgehens­weise lediglich zu einer groben Ersatzlosung. Eine exaktere Analyse des Be­triebsmitteleinsatzes in der Produktion wird erst durch die Verbindung von In­vestitions- und Produktionstheorie moglich. Ansatze hierzu finden sich z.B. bei ALBACH [1962b]; LUHMER [1975]; STEPAN [1981]; KISTNER [1993a], S. 210 ff.

• Die Erfassung des Faktorverzehrs beim Potentialfaktor Arbeitskraft bereitet ebenfalls groBe Schwierigkeiten, denn "der Mensch und sein produktiver Bei­trag zur Leistungserstellung lassen sich nicht eindeutig in mathematischen Formeln einfangen." (HEINEN [1983], S. 279) Wlihrend die Leistungsabgabe der Betriebsmittel aufgrund des Eigentums- oder Nutzungsrechts des Unter­nehmens nahezu beliebig gestaltet werden kann, bestehen bei den Arbeits­krliften zum Teil erhebliche Einschrlinkungen aufgrund von gesetzlichen Rah­menbedingungen und vertraglichen Vereinbarungen. Auch wenn damit die Kausalitat von Mengen- und Wertgerust bei der Erfassung des Produktionsge­schehens umgekehrt gestellt wird, orientiert sich die Messung des Arbeits­krlifteeinsatzes in der Regel an dem gezahlten Entgelt. Somit verwendet man beim Zeitlohn eine zeitabhangige und beim Leistungslohn eine ausbringungs­abhangige Faktoreinsatzfunktion:

bzw.

Dadurch werden allerdings samtliche Unterschiede in der individuellen und auch situationsabhangigen Leistungsfahigkeit der Arbeitskrlifte vemachlassigt. Urn diese zu erfassen, mfiBte die Produktionstheorie auf Ansatze der Perso­nalwirtschaft zurfickgreifen.

Page 203: Produktionstheorie ||

192 3. Betriebswirtschaftliche Produktionsjunktionen

AbschlieBend ist festzuhalten, daB die HEINEN-Produktionsfunktion bei der Er­fassung des Verbrauchs von Potentialfaktoren nicht iiber die bislang behandelten produktionstheoretischen Ansatze hinausgeht. Die Formulierung von Faktorein­satzfunktionen erfolgt lediglich in formaler Analogie zu denen der Repetierfakto­ren, ohne jedoch die gleiche theoretische Fundierung aufzuweisen.

3.2.3 Die Wiederholungsfunktion

Wahrend bislang der Faktoreinsatz bei der einmaligen Ausfiihrung einer Ele­mentarkombination betrachtet wurde, ist in den folgenden Abschnitten zu unter­suchen, wie sich der gesamte Faktoreinsatz bei einem bestimmten Ausbringungs­programm, fiir dessen Erstellung die mehrfache Durchfiihrung bestimmter Ele­mentarkombinationen erforderlich ist, ermitteln HiBt. Dieser Zusammenhang wird mit Hilfe von Wiederholungsfunktionen hergestellt, die die Anzahl der Durchfiih­rungen einer Elementarkombination in Abhangigkeit von verschiedenen EinfluB­groBen abbilden. Dabei wird - wie bereits in Abschnitt 3.2.1.2 kurz eingefiihrt -zwischen primaren, sekundaren und tertiaren Elementarkombinationen unter­schieden.

3.2.3.1 Primare Elementarkombinationen

Die Anzahl der erforderlichen Wiederholungen einer primiiren Elementarkombi­nation hangt in erster Linie von der Ausbringungsmenge x abo Fiir den einfach­sten Fall der einstufigen Einproduktproduktion laBt sich dieser Zusammenhang direkt formulieren. Steht fiir die Produktion lediglich eine einzige Elementarkom­bination zur Verfiigung, so ergibt sich die Anzahl w der erforderlichen Wieder­holungen, indem man die gewiinschte Ausbringungsmenge x durch die bei einer Durchfiihrung der Elementarkombination erzeugte Menge x dividiert:

x W=-

X

LaBt sich diese Division nicht glatt ausfiihren, so ist eine weitere Durchfiihrung der Elementarkombination erforderlich, deren Output allerdings teilweise nicht benotigt wird und daher gelagert oder - falls es sich urn spater nicht mehr ver­wendbare Giiter handelt - beseitigt werden muB.

Dementsprechend ergibt sich der fUr die geplante Produktion insgesamt erforder­liche Einsatz des Verbrauchsfaktors i (i = 1, ... ,n), indem man die fiir die Durch-

Page 204: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 193

fiihrung einer einzelnen Elementarkombination j am Betriebsmittel k benotigten

Faktoreinsatzmengen 'ijk mit w multipliziert:

ges e 'ijk = 'ijk . w i = 1, ... ,n; j = 1, ... ,m; k = 1, ... ,1

Stehen in der Produktionsstelle k mehrere Elementarkombinationen zur Verfii­gung, die z.B. durch Ausnutzen von UmschaItmoglichkeiten eines Betriebsmittels oder durch Nutzung verschiedener vorhandener Aggregate realisiert werden kon­nen, so laBt sich die geplante Produktionsmenge x auf unterschiedliche Art und Weise auf diese Elementarkombinationen aufteilen. Mit Hilfe von Verteilungspa­rametem v j' j = 1, ... ,m, die angeben, in welchem Umfang die einzelnen Ele­mentarkombinationen eingesetzt werden, laBt sich die Gesamtproduktionsmenge aIs Konvexkombination von Teilproduktionsmengen x j darstellen:

j=I, ... ,m

m

x=~>j j=l

mit: O~ Vj ~ 1 j=I, ... ,m

m

~>j=1 j=l

Hat ein Verteilungsparameter den Wert Null, so wird die entsprechende Ele­mentarkombination iiberhaupt nicht benutzt, bei einem Wert von Eins wird sie als einzige eingesetzt. Eine tatsachliche Verteilung der Produktionsmenge findet immer dann statt, wenn mindestens zwei Verteilungsparameter Werte zwischen Null und Eins annehmen.

Die Wiederholungsfunktion ffir jede einzelne Elementarkombination j ergibt sich dann, indem man die ihr bei der Arbeitsverteilung zugewiesene Produktionsmen­ge durch die bei einer einzelnen Durchfiihrung entstehende Menge dividiert:

j=I, ... ,m

Zusatzlich ist bei der Aufstellung der Wiederholungsfunktionen in Betracht zu ziehen, daB bei realen Produktionsvorgangen haufig Ausschuj3 auf tritt, so daB nicht aIle hergestellten Teile auch ffir den vorgesehenen Zweck verwendbar sind. Urn die gewiinschte Menge Hefem zu konnen, ist daher eine entsprechend hohere

Page 205: Produktionstheorie ||

194 3. Betriebswirtschaftliche Produktionsfunktionen

Produktionsmenge erforderlich. Liegen hinreichende Erfahrungen mit dem Pro­duktionsprozeB vor, so laBt sich die Wahrscheinlichkeitsverteilung des Ausschus­ses angeben. Daraus kann man fiir jede Elementarkombination einen Ausschuj3-koeJfizienten a j als Korrekturfaktor ermitteln. Bei einer durchschnittlichen Aus­schuBrate von z.B. 5% muB aj ungefahr den Wert 1,05 annehmen, damit die Ge­samtproduktion ausreicht, urn nach Abzug der AusschuBteile die gewiinschte Lie­fermenge zu erhalten. Der AusschuBfaktor laBt sich wie folgt in den Wiederho­lungsfunktionen berucksichtigen:

j=l, ... ,m

Liegen nahere Informationen vor, von welchen Faktoren der AusschuB abhangt­hierfilr kommen z.B. die Lange und Lage der Arbeitszeit oder die Produktionsge­schwindigkeit in Frage - so kann man den statistisch ermittelten AusschuBfaktor durch eine den exakten Zusammenhang modellierende Funktion ersetzen.

Bislang wurde aus Grunden der einfacheren Darstellung davon ausgegangen, daB ein bestimmtes Produkt in einer einzigen Produktionsstelle gefertigt wird. Be­trachtet man jedoch den realistischeren Fall der mehrstufigen Mehrproduktferti­gung, so wird die Herleitung von Wiederholungsfunktionen erheblich komplexer, denn es ist zusatzlich der Aufbau der gesamten Fertigungsstruktur mit samtlichen organisatorischen und zeitlichen Zusammenhangen zu berucksichtigen (vgl. zu den moglichen Fertigungsstrukturen die Ausfiihrungen in Abschnitt 1.2.2).

Durch die Abfolge der Produktionsstufen bei der mehrstufigen Produktion wird der Output einer Produktionsstufe zum Input der jeweils nachgelagerten Prozes­se. Urn die Abhangigkeit der geforderten Produktionsmengen an Zwischenpro­dukten von den Produktionsmengen der nachfolgenden Produktionsstufen und letztlich der Endprodukte adaquat erfassen zu konnen, nimmt HEINEN eine be­griffliche Unterscheidung zwischen originiiren und derivativen Produktionsfak­toren vor; erstere werden von auBen bezogen und letztere in vorgelagerten Pro­duktionsprozessen hergestellt (vgl. HEINEN [1983], S. 286). Es wird zur Verein­fachung davon ausgegangen, daB derivative Produktionsfaktoren nicht extern bezogen und Zwischenprodukte nicht am Markt verauBert werden konnen, so daB die Outputmenge einer Produktionsstelle den Input der nachgelagerten Stellen darstellt.

In Abbildung 75 ist am Beispiel einer linearen Produktionsstruktur mit filnf Pro­duktionsstufen dargestellt, welche zusatzlichen Sachverhalte des Produktionsge-

Page 206: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 195

schehens bei der mehrstufigen Produktion fUr die Herleitung von Wiederholungs­funktionen zu berucksichtigen sind. Bei der angegebenen Produktionsstruktur stehen fUr die Herstellung des Endprodukts insgesamt neun Elementarkombina­tionen zur Verftigung, die sich wie in der Abbildung dargestellt auf die fiinf Pro­duktionsstufen verteilen. AuBer dem Input an derivativen Produktionsfaktoren der jeweiligen Vorstufe benotigt jede Produktionsstufe einen oder mehrere origi­nare Produktionsfaktoren. Die an den Pfeilen zwischen den einzelnen Produkti­onsstufen angegebenen Zahlen entsprechen der Anzah! der Produkte einer vor­gelagerten Produktionsstufe, die je produzierter Einheit auf der nachgelagerten Produktionsstufe benotigt werden.

- - - - -~ originiire Produktionsfaktoren

--... ~.. derivative Produktionsfaktoren

~ Produktionsstufe

@-- Elementarkombinationen

Abb. 75: Zusammenhange bei einer linearen Produktionsstruktur

Da lediglich fiir das Endprodukt exteme Nachfrage besteht und somit die gefor­derten Produktionsmengen bekannt sind, mtissen die Bedarfsmengen der Vorpro­dukte und der originaren Produktionsfaktoren - entsprechend dem Vorgehen der sukzessiven Stiicklistenauflosung in der Materialbedarfsplanung (vgl. z.B. KIST­

NER / STEVEN [1993b], S. 215 ff.) - rekursiv tiber samtliche Produktionsstufen k = 1, ... ,1 hinweg bestimmt werden. Es wird davon ausgegangen, daB in einer Produktionsstufe bzw. -stelle k entweder nur eine Maschine oder mehrere Ma­schinen des gleichen Typs zur Verftigung stehen.

1st in einer Produktionsstelle k lediglich eine Elementarkombination verftigbar, so ergibt sich der Gesamtbedarf xk _1 an den Produkten der direkt vorgelagerten Produktionsstelle, indem man die jeweilige okonomische Verbrauchsfunktion

Page 207: Produktionstheorie ||

196 3. Betriebswirtschaftliche Produktionsfunktionen

f k (t) mit der zugehorigen Wiederholungsfunktion unter Beriicksichtigung des Ausschu8faktors ak multipliziert:

Xk_1 =ik(t).~k ·xk xk

k =2, ... ,1

Entsprechend gilt ffir den Bedarf an originaren Produktionsfaktoren i, die zur Herstellung des auf Stufe k erzeugten Produkts benotigt werden:

lik =fik(t). ~k ·xk xk

i = 1, ... ,n; k = 1, ... ,1

Stehen in der Produktionsstelle hingegen mehrere Elementarkombinationen zur Verftigung, die einen unterschiedlichen Bedarf an den Produkten der vorgelager­ten Produktionsstelle und an den originaren Produktionsfaktoren aufweisen, so ist bei der Berechnung der Bedarfsmengen zusatzlich die Verteilung der geplanten Produktionsmenge auf die verschiedenen Elementarkombinationen j = 1, ... ,m zu beriicksichtigen:

k =2, ... ,1

m a.k.v.k lik = L fijdt). J _ J ·xk

j=l Xjk i = 1, ... ,n; k = 2, ... ,1

Bei dieser Vorgehensweise ergeben sich offensichtlich Inputkoeffizienten, die nicht konstant sind, sondem unter anderem von der Arbeitsverteilung auf die in einer Produktionsstelle verftigbaren Elementarkombinationen abhangen. HEINEN schlagt daher vor, diese durch konstante Produktionskoeffizienten aik zu ersetzen, die z.B. auf der Basis von Durchschnittswerten gebildet werden konnen. Diese lauten ffir Zwischenprodukte

bzw. fUr originare Produktionsfaktoren

r.·k ajk =_1-xk

i = 1, ... , k - 1; k = 2, ... , 1

i = 1, ... ,n; k = 1, ... ,1

Durch die Einftihrung der Produktionskoeffizienten kann auf die rekursive Be­rechnung der Bedarfsmengen an derivativen Produktionsfaktoren verzichtet wer­den, denn die je Einheit eines Zwischen- oder Endprodukts erforderliche Menge

Page 208: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 197

eines beliebigen Einsatzfaktors ergibt sich durch Multiplikation der Produktions­koeffizienten der benotigten Zwischenprodukte. In der in Abbildung 75 angege­benen Produktionsstruktur sind z.B. zur Erzeugung einer Einheit des Endpro­duktes folgende Mengen der Zwischenprodukte erforderlich:

1 1·3= 3 1·3·0,7=2,1 1· 3·0,7·2 = 4,2

Einheit von Zwischenprodukt 4 Einheiten von Zwischenprodukt 3 Einheiten von Zwischenprodukt 2 Einheiten von Zwischenprodukt 1

Das Produkt der jeweils relevanten Produktionskoeffizienten ergibt die Pro­grammkoeffizienten Phk (vgl. HEINEN [1983], S. 198):

k-l

Phk = II aile h = 1, ... ,k -1; k = 2, ... ,1 i=h

Mit Hilfe dieser Programmkoeffizienten UiBt sich die Wiederholungsfunktion ei­ner primiiren Elementarkombination auf der Produktionsstufe k endgiiltig formu­lieren:

1

L Phk ·xk h=k+l

j = 1, ... ,m; k = 1, ... ,1

Die Faktoreinsatifunktionen lauten unter Beriicksichtigung samtlicher EinfluB­groBen:

i = 1, ... ,n; j = 1, ... ,m; k = 1, ... ,1

Damit wird deutlich, daB sich die Produktionsbeziehung bei der HEINEN-Produk­tionsfunktion nicht ausschlieBlich anhand von Faktoreinsatz- und Ausbringungs­mengen darstellen laBt, sondem daB zusatzlich die Kenntnis von Sachverhalten aus dem eigentlichen TransformationsprozeB, wie die LosgroBen oder der Aus­schuB, beriicksichtigt werden miissen.

Bei der Herleitung der HEINEN-Produktionsfunktion wurde von zahlreichen Aspekten der Realitat abstrahiert, die sich teilweise durchaus noch in das Modell integrieren lassen: Bei der im Beispiel zugrunde gelegten linearen Produk­tionsstruktur handelt es sich urn den einfachsten Fall; doch eine Ubertragung auf Montagestrukturen und allgemeine Produktionsstrukturen ist leicht vorzunehmen.

Page 209: Produktionstheorie ||

198 3. Betriebswirtschaftliche Produktionsfunktionen

Weiter ist die Erfassung des Zukaufs oder Verkaufs von derivativen Produktions­faktoren problemlos moglich, ebenso konnen Lagerbestandsvedinderungen auf den einzelnen Produktionsstufen berlicksichtigt werden. Jedoch ist das Modell auf zyklenfreie Produktionsstrukturen beschrankt, denn bei zyklischen Lieferbe­ziehungen laBt sich keine rekursive Bedarfsauflosung durchfiihren.

3.2.3.2 Sekundare Elementarkombinationen

Als sekundare Elementarkombinationen werden so1che Vorgange bezeichnet, die jeweils nach einer bestimmten - festen oder auch variablen - Anzahl primarer Elementarkombinationen wiederholt werden. Daher besteht lediglich ein indi­rekter Zusammenhang zwischen der Anzahl ihrer Durchfiihrungen und der Aus­bringungsmenge als wesentllcher EinfluBgroBe (vgl. HEINEN [1983], S. 301 ff.).

So ist ein Riistvorgang immer dann erforderlich, wenn ein Betriebsmittel in Be­trieb genommen oder von einer Produktart auf eine andere umgestellt wird. Die Anzahl der Riistvorgange wiihrend einer bestimmten Zeitspanne hangt damit vom Umfang der Produktionslose ab; bei groBen Losen muG seltener gerlistet werden als bei kleinen. Auch zahlreiche Vorgange in den der Produktion vor- oder nach­gelagerten Bereichen stellen sekundare Elementarkombinationen dar:

• Die Beschaffung von extern bezogenen Produktionsfaktoren erfolgt in der Re­gel ebenfalls in Losen, die anfa1lenden Tlitigkeiten hangen jedoch nicht direkt von dem Umfang eines einzelnen Loses, sondern von ihrer Anzahl abo

• Ahnliches gilt fiir die Kommissionier- und Versandvorgange im Warenaus­gangsbereich und die hiermit verbundenen Verwaltungstlitigkeiten, die in er­ster Linie von der Anzahl der Auftrlige abhangen.

• Auch die Produktion begleitende Verwaltungsvorgiinge wie die auftragsbezo­gene Erfassung von Stundennachweisen und Materialentnahmescheinen stehen in keinem direkten Zusammenhang mit der Ausbringungsmenge, wohl aber mit der Anzahl der jeweiligen Vorgange.

Die Wiederholungsfunktion einer sekundaren Elementarkombination ergibt sich somit, indem man die Anzahl der Durchfiihrungen der ihr zugrunde liegenden primaren Elementarkombination durch die Los- bzw. AuflagengroBe dividiert:

p s Wj

w·=-} x·

}

j=I, ... ,m

Page 210: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 199

Da die AuflagengroBe nicht fest vorgegeben, sondem eine Aufgabe der Produk­tionsplanung ist, werden dort die Entscheidungen fiber die Haufigkeit der Durch­fiihrung der sekundaren Elementarkombinationen getroffen.

Es hangt von der angestrebten Genauigkeit der Betrachtung ab, welcher Vorgang als eine Umrfistung angesehen wird: So ist z. B. bei der Sortenfertigung jeweils ein umfangreicher Umrfistvorgang erforderlich, urn die Produktionsanlage auf eine andere Sorte umzurfisten, zusatzlich fallen wahrend der Produktion einer bestimmten Sorte in der Regel zusatzlich kleinere Einrichtearbeiten an, urn zwi­schen den verschiedenen Varianten der Sorte zu wechseln. FUr eine aggregierte Erfassung des Produktionsgeschehens ist es dann ausreichend, lediglich die Sor­tenwechsel als sekundare Elementarkombinationen zu erfassen; bei einer detail­lierten Betrachtung entspricht jede Umstellung der Anlage einer anderen sekun­daren Elementarkombination.

3.2.3.3 Tertiare Elementarkombinationen

Tertiare Elementarkombinationen lassen sich dadurch charakterisieren, daB die Haufigkeit ihrer Durchffihrung in keinem erkennbaren Zusammenhang mit der Ausbringungsmenge steht, z.B. die Heizung der Betriebsgebaude, die Wartung der Betriebsmittel und zahlreiche Verwaltungsvorgange wie Buchhaltung oder Lohnabrechnung. Diese Vorgange werden vielmehr in bestimmten Zeitabstanden routinemaBig durchgeffihrt und sind z.B. durch Wartungsintervalle bzw. Organi­sationsanweisungen determiniert. Schwankungen bei der Auslastung der Hei­zungsanlage hangen in erster Linie von der Witterung ab und nicht von der Aus­bringungsmenge.

Daher bietet es sich an, die Wiederholungsfunktion tertiiirer Elementarkombina­tionen lediglich in Abhangigkeit von der Zeit zu formulieren:

j=l, ... ,m

Allerdings ist die Abgrenzung zwischen sekundaren und tertiaren Elementarkom­binationen haufig nicht eindeutig, sondem hangt wiederum von dem Detailliert­heitsgrad der Betrachtung bzw. Erfassung ab: So mfiBte die Wartung einer Ma­schine eigentlich in Abhangigkeit von ihrer Laufleistung erfolgen. Urn den damit verbundenen Erfassungsaufwand zu vermeiden und auch die organisatorischen Ablaufe zu vereinfachen, wird jedoch haufig eine vorbeugende Wartung in re­gelmaBigen Zeitabstanden vorgenommen, die dann eine terti are Elementarkom­bination darstellt.

Page 211: Produktionstheorie ||

200 3. Betriebswirtschaftliche Produktionsfunktionen

3.2.4 Aufstellung der Produktions- und Kostenfunktion

In einer Produktionsfunktion wird der mengenmiij3ige Zusammenhang zwischen Faktoreinsatz- und Ausbringungsmengen bei der betrachteten Produktionseinheit in Form von Faktoreinsatz- oder Produktfunktionen dargestellt (vgl. nochmals die Ausftihrungen in Abschnitt 1.1.2). 1m Rahmen der HEINEN-Produktionsfunktion HiBt sich der fUr die Erzeugung eines bestimmten Produktionsprogramms insge­samt erforderliche Faktoreinsatz mit Hilfe der Faktoreinsatz- und Wiederholungs­funktionen der einzelnen an der Produktion beteiligten Elementarkombinationen, die den jeweiligen Einsatzfaktor benatigen, beschreiben (vgl. HEINEN [1983], S. 311):

m

ri = Lrij 'Wj i = 1, ... ,n j=l

Zusatzlich zu diesen direkt erfaBbaren Verbrauchsmengen ist der Faktoreinsatz zu berucksichtigen, der sich lediglich indirekt den Produkten zuordnen laBt, z.B. der Gtiterverzehr durch tertiare Elementarkombinationen oder der in Abhangig­keit von der Zeit erfaBte Potentialfaktoreinsatz. Daher ist die oben angegebene Faktoreinsatzfunktion urn eine Komponente ftir den zeitabhiingigen Faktorein-satz zu erweitem:

m

'i = L'ij . W j + 'i (t) i = 1, ... ,n j=l

Durch Bewertung der Einsatzfaktoren mit ihren Preisen erhalt man die Kosten eines bestimmten Fertigungsprogramms. Diese sind durch die betriebliche Pro­duktionsplanung wie folgt zu beeinflussen: Uber die Ausbringungsmenge der einzelnen Produkte hinaus hangen die Kosten von der Art und Weise ab, wie das Fertigungsprogramm erzeugt wird. Dabei wirkt sich die Bestimmung der Aufla­gengraBe auf die Wiederholhaufigkeit der sekundaren Elementarkombinationen aus. Die Zeitdauer, in der die einzelnen Elementarkombinationen durchgeftihrt werden, beeinfluBt tiber die erforderliche Leistungsabgabe der Betriebsmittel ih­ren Faktorverzehr. Weiter hangen die Kosten von den AusschuBkoeffizienten sowie von der Arbeitsverteilung auf die altemativ fUr ein Produkt zur Verftigung stehenden Elementarkombinationen ab, die in den Verteilungsparametem zum Ausdruck kommt. Die Abhangigkeit der Produktionskosten von diesen EinfluB­graBen laBt sich formal wie folgt erfassen:

K= K(x,p;x,t,a,v)

Page 212: Produktionstheorie ||

3.2 Die HEINEN-Produktionsfunktion 201

Dabei werden neben den beiden direkten KosteneinfluBgroBen Ausbringungs­menge (x) und Faktorpreise (P) die oben genannten indirekten EinfluBgroBen LosgroBe (x), Dauer der Elementarkombination (t), AusschuBkoeffizient (a) und Verteilungsparameter (v) berucksichtigt. 1m Einzelfall ist bei der Herleitung einer konkreten Kostenfunktion zu entscheiden, wie detailliert diese indirekten Ein­fluBgroBen erfaBt werden sollen.

3.2.5 Beurteilung der IlEINEN-Produktionsfunktion

Die von HEINEN entwickelte Produktionsfunktion vom Typ C stellt einen weite­ren Schritt in Richtung auf eine detaillierte, realitiitsnahe Abbildung des produk­tionswirtschaftlichen Geschehens dar. Die relevanten Zusammenhange werden recht exakt und eindeutig dargestellt, z.B. lassen sich die Besonderheiten von Rlistvorgangen oder die Auswirkungen unterschiedlicher Arbeitsverteilungen erfassen. Auch die Einfiihrung von AusschuBkoeffizienten, durch die sich die unterschiedliche Effizienz beim Betrieb der Produktionsanlagen erfassen liiBt, erhoht den RealiUitsbezug des Ansatzes. Die HEINEN-Produktionsfunktion bildet daher eine tragfiiliige Grundlage flir die ErkHirung und die Steuerung des Einsat­zes von kurzfristig zu disponierenden Repetierfaktoren, vor allem Betriebsstof­fen; hinsichtlich des Verbrauchs von langlebigen Potentialfaktoren kommt ihr kein neuer Erkenntniswert zu.

Durch die explizite Erfassung der zeitlichen Dimension der Produktion wird be­reits ein Schritt in Richtung einer Dynamisierung der Produktionstheorie vorge­nommen. Ein weiterer Fortschritt ist darin zu sehen, daB sich liber outputvariable und substitutionale Elementarkombinationen auch die Produktionsvorgange in der prozeBtechnischen Industrie prinzipiell erfassen lassen. Eine Erweiterung der HEINEN-Produktionsfunktion urn Umweltschutzaspekte ist moglich und auch be­reits in der Literatur vorgenommen worden (vgl. hierzu insbesondere STREBEL [1980], S. 42 ff.; KEILUS [1993]). Auf eine eingehende Darstellung wird an die­ser Stelle verzichtet, da sich bezliglich der Rolle von Umweltglitem in produk­tionstheoretischen Modellen keine wesentlichen neuen Erkenntnisse ergeben.

HEINEN selbst gibt zu bedenken, daB die exakte Abbildung des Produktionsge­schehens auf dem von ihm eingefiihrten Detaillierungsgrad hiiufig zu Quantifizie­rungsproblemen flihren wird. Angesichts der Tatsache, daB sich die HEINEN­Produktionsfunktion in erster Linie auf die exakte, leistungsabhangige Erfassung des jedoch wertmiiBig in der Regel nicht sehr bedeutenden Betriebsstoffeinsatzes bezieht, ist eine Darstellung auf einem derartigen Komplexitiitsniveau weder

Page 213: Produktionstheorie ||

202 3. Betriebswirtschaftliche Produktionsfunktionen

wiinschenswert noch notwendig. Letztlich ist ffir die meisten der betrachteten Fragestellungen eine Durchschnittsbetrachtung auf einem entsprechend aggre­gierten Niveau ausreichend.

3.3 Die betriebswirtschaftliche Input/Output-Analyse 3.3.1 Ausgangspunkt

Die auch als Produktionsfunktion vom Typ D bezeichnete betriebswirtschaftliche InputlOutput-Analyse wurde erstmals 1969 von KLoOCK systematisch analysiert. Sie basiert auf der Verkntipfungsanalyse der volkswirtschaftlichen Gesamtrech­nung nach LEONTIEFF [1951] und tibertragt die dort gewonnenen Erkenntnisse auf innerbetriebliche Zusammenhange. Bereits 1953 gab PICHLER Beispiele ffir Anwendungen der InputlOutput-Rechnung in der chemischen Industrie, die sich von der Fertigungsindustrie vor allem durch die Kuppelproduktion und das Vor­herrschen von zyklischen ProzeBstrukturen unterscheidet und mit den bislang behandelten produktionstheoretischen Ansatzen nicht adaquat abgebildet werden konnte.

Die volkswirtschaftliche InputiOutput-Rechnung beschreibt die quantitativen Zu­sammenhange zwischen den Bereichen einer Volkswirtschaft mit Hilfe linearer Gleichungen, die die eingesetzten und erzeugten Gtitermengen abbilden, und er­moglicht damit eine Analyse der zwischen ihnen bestehenden Abhangigkeiten auf unterschiedlichem Aggregationsniveau. Die Abbildung der Beziehungen in InputlOutput-Tabellen erlaubt z.B. die Analyse des Volkseinkommens in Form einer Verwendungs- oder Verteilungsrechnung; die Darstellung als InputlOutput­Graph gibt eine tibersichtliche Reprasentation der innerhalb der Volkswirtschaft bestehenden Verflechtungen.

Dementsprechend werden in der betriebswirtschaftlichen InputiOutput-Theorie die Wirkungszusammenhange zwischen den Input- und Outputmengen der ver­schiedenen, an der Herstellung der Produkte auf unterschiedliche Weise beteilig­ten innerbetrieblichen Stellen analysiert. Diese Analyse kann ebenfalls auf unter­schiedlichem Aggregationsniveau durchgeftihrt werden; dabei werden jeweils die Vorgange innerhalb einer Stelle, die als Black Box betrachtet wird, mittels einer Transformationsfunktion abgebildet, wlihrend die Beziehungen zwischen ver­schiedenen Stellen explizit berticksichtigt werden. Durch unterschiedliche For­mulierung der Transformationsfunktionen lassen sich samtliche bislang behan-

Page 214: Produktionstheorie ||

3.3 Die betriebswirtschaftliche Input/Output-Analyse 203

delten Produktionsfunktionen als SpezialfaIle der betriebswirtschaftlichen In­put/Output-Analyse darstellen.

Von wesentlicher Bedeutung ist der Begriff der Produktionsstelle als kleinster bei der Analyse betrachteter Einheit. Die Produktionsstellen werden - ahnlich wie im Ansatz von HEINEN - so gebildet, daB auf der jeweiligen Betrachtungsebene eine eindeutige Beziehung zwischen Input- und Outputmengen besteht, wobei jede Produktionsstelle genau eine Produktart bearbeitet. Eine Produktionsstelle kann dabei z.B. einem Arbeitsgang oder einem TeilprozeB im Fertigungsablauf ent­sprechen, aber auch einer raumlich oder organisatorisch abgegrenzten Einheit. In Produktionsstellen konnen sowohl Bearbeitungsvorgange als auch innerbetriebli­che Lager- oder Reparaturvorgange durchgefUhrt werden.

In Abschnitt 3.3.2 werden zunachst die verschiedenen Darstellungsformen, auf denen die Input/Output-Analyse basiert, eingeftihrt. AnschlieBend wird in Ab­schnitt 3.3.3 das Grundmodell der betriebswirtschaftlichen Input/Output-Analyse als Produktions- und als Kostenmodell vorgestellt. In Abschnitt 3.3.4 erfolgt eine abschlieBende Beurteilung des Ansatzes.

3.3.2 Darstellungsformen der Input/Output-Analyse

Bei der betriebswirtschaftlichen Input/Output-Analyse handelt es sich urn einen produktionstheoretischen Ansatz mit einem sehr weiten Anwendungsbereich. So werden sowohl der Fall der mehrstufigen Fertigung mit beliebigen - auch zykli­schen - Produktionsstrukturen als auch die Mehrproduktfertigung abgedeckt. Durch die Moglichkeit der Darstellung auf unterschiedlichen Aggregationsni­veaus kann die Analyse fUr das gesamte Untemehmen oder auf der Ebene ver­schiedener Fertigungsbereiche, Fertigungssysteme bis hin zu einzelnen Ferti­gungsanlagen erfolgen. Damit erlaubt die betriebswirtschaftliche Input/Output­Analyse eine sehr realitatsnahe Abbildung des Fertigungsgeschehens, bei der auch einige Entscheidungen aus dem Bereich der Produktionsplanung angemes­sene Berticksichtigung finden.

Die Abbildung betrieblicher Sachverhalte kann auf unterschiedliche Weise erfol­gen: Zur qualitativen Analyse der betrieblichen Verflechtungsbeziehungen wer­den Input/Output-Graphen und -Matrizen herangezogen; ftir eine quantitative Analyse kommen Input/Output-Gleichungen zum Einsatz.

Page 215: Produktionstheorie ||

204 3. BetriebswirtschaJtliche Produktionsfunktionen

3.3.2.1 Input/Output-Graphen und -Matrizen

In einem InputiOutput-Graphen werden die fUr die jeweilige Analyse relevanten betrieblichen Teilbereiche und ihre mengenmaBigen Austauschbeziehungen so­wie die Beziehungen des Untemehmens zu seiner Umwelt abgebildet. Dabei ist es durch eine schrittweise Verfeinerung moglich, immer detailliertere Lieferbe­ziehungen darzustellen und so die Abbildung auf jeder Betrachtungsebene reali­tiitsnaher zu gestalten. Ein Beispiel ist in den Abbildungen 76 und 77 angegeben: Abbildung 76 stellt die aggregierte Produktionsfunktion des Gesamtuntemeh­mens dar, die lediglich die Transformation von vier Produktionsfaktoren als In­puts in drei Produkte als Outputs beschreibt (vgl. Abschnitt 1.1.2). Eine so1che aggregierte Betrachtung wurde z.B. bei den im zweiten Kapitel behandelten er­tragsgesetzlichen Produktionsfunktionen vorgenommen.

r----------, fl ~ I I

XI ~ f2

~ x2 f3 I .-

· 1 xJ f4 ~ r •

I Untemehmen '- ____ ____ __ ..J

Abb. 76: Input/Output-Graph des Untemehmens

Die Vorgiinge innerhalb des Untemehmens, d.h. auf we1che Art und Weise be­stimmte Transformationsprozesse letztlich dazu fUhren, daB aus gegebenen In­putmengen (r1 ' r2 ' r3, r4) eine bestimmte Kombination von Outputmengen (Xl' X2, X3) erzeugt werden kann, werden hierbei zuniichst nicht betrachtet. Ab­bildung 77 geht einen Schritt weiter und stellt auch diese Vorgiinge explizit dar, indem die verschiedenen innerbetrieblichen Lager- und Produktionsstellen mit ihren Lieferbeziehungen abgebildet werden.

Dieser Input/Output- bzw. GozINTo-Graph (vgl. VASZONYI [1962]) stellt folgen­de Beziehungen dar: Die von den Beschaffungsmiirkten bezogenen originiiren Produktionsfaktoren r1, ... ,r4 werden zuniichst in die Eingangsliiger 1, ... ,4 einge­bracht. Von dort werden sie bedarfsgerecht entnommen und in den Produktions­stellen 5, ... ,12 eingesetzt. Dabei handelt es sich bei den Produktionsstellen 11 und 12 urn reine Montagestellen, die lediglich Zwischenprodukte zu den Endproduk­ten 1 und 2 zusarnmensetzen, wiihrend in den anderen Stellen Be- und Verarbei-

Page 216: Produktionstheorie ||

3.3 Die betriebswirtschaftliche Input/Output-Analyse 205

tungsprozesse stattfinden. Die Produkte der Stellen 5, ... ,9 sind Zwischenprodukte bzw. aus Sicht der nachgelagerten Stellen derivative Produktionsfaktoren, da sie als Einsatzgut in einem nachgelagerten ProduktionsprozeB Verwendung finden. Das in Stelle 10 hergestellte Produkt wird gleichzeitig in Stelle 12 als Zwischen­produkt und als Endprodukt 3 verwendet.

I I ~

I 1 ________ _

D Eingang lager

o Produktion telle

o Au gang lager

Abb. 77: Detaillierter Input/Output-Graph

Der Materialfluj3 zwischen den Stellen kann beliebig gestaltet sein; hier sind li­neare Produktionsstrukturen, Montagestrukturen und allgemeine Produktions­strukturen, jedoch keine zyklischen Beziehungen abgebildet. (Zu den Begriffen vgl. Abschnitt 1.2.2.) Die Endproduktmengen xI, ... ,x3 werden zunachst in den Ausgangslagerstellen 13, ... ,15 gelagert, bevor sie an die Absatzmarkte weiterge­geben werden.

Auf einer noch detaillierteren Betrachtungsebene konnten zusatzlich die Bezie­hungen innerhalb der einzelnen Produktionsstellen betrachtet werden, d.h. es wa­re zu untersuchen, aufgrund welcher mengenmaBigen Verflechtungen zwischen den dort befindlichen Aggregaten und Arbeitsplatzen die in Abbildung 77 darge-

Page 217: Produktionstheorie ||

206 3. Betriebswirtschaftliche Produktionsfunktionen

stellten Produktionsfunktionen der verschiedenen Produktionsstellen zustande kommen.

Eine zum InputlOutput-Graphen aquivalente Darstellungsform sind Input/Output­Matrizen, in denen die Lieferbeziehungen zwischen den Produktionsstellen abge­bildet werden. Hierbei lassen sich verschiedene Formen unterscheiden:

• Bei einer Strukturmatrix wird fUr jede bestehende Lieferbeziehung von Stelle i nach Stelle j eine 1 eingetragen, andernfalls ist sie mit Nullen besetzt.

• Bei einer vollstiindigen Input/Output-Matrix hingegen wird als zusatzliche In­formation der Umfang des Giiterflusses von Stelle i nach Stelle j in Form eines Inputkoeffizienten aij' der dem Bedarf des von Stelle i hergestellten Gutes je Einheit des von Stelle j hergestellten Gutes entspricht, angegeben.

In Abbildung 78 ist die Strukturmatrix zu dem in Abbildung 77 angegebenen In­putlOutput-Graphen dargestellt. Dabei sind zeilenweise die liefemden und spal­tenweise die empfangenden Stellen angeordnet. Es handelt sich offensichtlich urn eine diinnbesetzte Matrix, die im wesentlichen Nullelemente aufweist. Da die Lagerstellen 1, ... ,4 und 13,14,15 sich im angegebenen Beispiel gegenseitig nicht beliefem und auch keine dem generellen MaterialfluB entgegengerichteten Riick­lieferungen erfolgen, sind die grau unterlegten Bereiche der Matrix ausschlieBlich mit Nullelementen besetzt. Eintrage in diesen Bereichen ergeben sich in folgen­den Fallen:

• Wenn das Untemehmen nicht ausschlieBlich produziert, sondem einen Teil seiner Wertschopfung durch Handel erbringt, d.h. dadurch, daB es Giiter ein­kauft und unverandert weiterverkauft, treten Lieferungen von den Eingangsla­gem an die Ausgangslager auf. Diese bedeuten einen Eintrag im oberen rech­ten Bereich der Matrix (1,2,3,4 ~ 13,14,15).

• Bei einer dezentralen Struktur der Lagerhaltung kann der Fall auftreten, daB eine Lagerstelle, deren Bestand nicht ausreicht, urn die Anforderungen zu be­friedigen, von einer anderen Lagerstelle beliefert wird. Dies fiihrt zu einem Eintrag im oberen linken (1,2,3,4 ~ 1,2,3,4) oder unteren rechten (13,14,15 ~ 13,14,15) Bereich der Strukturmatrix. Auch die Lieferung aus einem Zen­trallager an regionale Lager laBt sich auf diese Weise abbilden.

• Eintrage in den weiteren Bereichen des linken Rands der Strukturmatrix be­deuten eine Riicklieferung von einer Produktionsstelle an ein Eingangslager (5, ... ,12 ~ 1,2,3,4) oder von einem Ausgangslager an ein Eingangslager (13,14,15 ~ 1,2,3,4), z.B. bei Fehllieferungen oder Reklamationen.

Page 218: Produktionstheorie ||

3.3 Die betriebswirtschaftliche Input/Output-Analyse 207

• Der mittlere Bereich des unteren Rands der Struktunnatrix (13,14,15 ~ 5, .. . ,12) weist Eintrage auf, wenn Rucklieferungen von einem Ausgangslager an eine Produktionsstelle erfolgen, z.B. zum Zweck der Nachbearbeitung bei festgestellten Mangeln .

j • I

2 3 4 • 5 6 7 8 9 10 11 12113 14 15 I I I I

I 0 0 0 o • 1 0 0 0 0 0 0 010 0 0 2 0 0 0

I o I I 0 0 0 0 0 I

0.0 0 0 I I

3 0 0 0 010 0 0 0 0 0 010 0 0 4 0 0 0

I 010 1 I 0 0 0 0 0:0 0 0 ---- -------T---------------T------

5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 7 0 0 0 0 0 0 0 0 I I 0 0 0 0 0 8 0 0 0 0 0 I 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 I

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -------T---------------T------13 o 0 0 010 0 0 0 0 0 0 010 0 0

I I 14 0 0 0 0,0 0 0 0 0 0 0 0·0 0 0

I I 15 0 0 0 010 0 0 0 0 0 0 0.0 0 0

• •

Abb. 78: Strukturmatrix

Anhand der Struktunnatrix laBt sich weiter erkennen, ob ein einheitlich gerichte­ter MaterialflufJ oder eine zyklische Produktionsstruktur gegeben ist: Liegt die Strukturmatrix in Form einer oberen Dreiecksmatrix vor oder laSt sie sich in eine so1che uberfuhren, so ist die Produktionsstruktur zyklenfrei, andernfalls tritt zu­mindest ein Fall von gegenseitiger Belieferung der Stellen auf. Bei der in Abbil­dung 78 angegebenen Strukturmatrix ist zwar aufgrund der Belieferung von Pro­duktionsstelle 6 durch Produktionsstelle 8 ein Eintrag unterhalb der Hauptdiago­nalen gegeben; jedoch laBt sich die Matrix durch eine Umnumerierung der Stel­len 6 und 8 in eine obere Dreiecksmatrix uberfuhren. Die zugrunde liegende Pro­duktionsstruktur ist daher zyklenfrei.

Abbildung 79 gibt die vollstandige Input/Output-Matrix zu der in Abbildung 77 dargestellten Produktionsstruktur an. Sie unterscheidet sich von der Struktunna­trix in Abbildung 78 dadurch, daB die Nicht-Nullelemente nunmehr nicht ledig-

Page 219: Produktionstheorie ||

208 3. Betriebswirtschaftliche Produktionsfunktionen

lich die Existenz eines Gtiterflusses von Stelle i nach Stelle j angeben, sondem auch dessen Umfang.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 8 0 0 0 0 0 0,5 0 0 0 0 2 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abb. 79: Input/Output-Matrix

3.3.2.2 Gleichungssystem

Grundlage fUr die quantitative Analyse der Giiterfliisse innerhalb einer gegebenen Produktionsstruktur ist die aquivalente Darstellung der zuvor in Form eines In-put/Output-Graphen bzw. einer Input/Output-Matrix angegebenen Informationen in Form eines Systems linearer Gleichungen. FUr jede Produktionsstelle wird eine lineare Gleichung formuliert, die deren Input- und Outputmengen zueinander in Beziehung setzt. Die allgemeine Formulierung einer InputiOutput-Gleichung fUr die Stelle i lautet:

Yi= L aijYj i = 1, ... ,n jeV(i)

Dabei bezeichnet Yi die Menge des von Stelle i gelieferten Guts und aij den In-put an Gutj, den Stelle i je Produkteinheit benotigt. Die Menge V(i) umfaBt die Stellenj, die ihren Output direkt an die Stelle i liefem.

Page 220: Produktionstheorie ||

3.3 Die betriebswirtschaftliche Input/Output-Analyse 209

Die Input/Output-Gleichungen, die die innerbetrieblichen Lieferbeziehungen fiir das in Abbildung 77 eingefiihrte Beispiel angeben, lauten:

YIS = YlO

Yl4 = Yl2

Y13 = YII

Yl2 = YlO +3yg + Y6

Yll = Yg +2ys

YlO = Y7

Yg = 2Y7 + Y6

Ys = Ys

Y7 = Y4

Y6 = 0,5ys + 3Y4 + Y3 + 2Y2

Ys = Y2 +4YI

Die Beziehungen des Untemehmens zu den Absatz- und Beschaffungsrnarkten lassen sich fiber folgende Gleichungen abbilden:

rl = YI

r2 = Y2

r3 = Y3

r4 = Y4

Xl = Yl3

x2 = Yl4

x3 = YIS

Da es sich irn vorliegenden Beispiel urn eine nicht-zyklische Produktionsstruktur handelt, Hillt sich durch rUckwartsgerichtete sukzessive Auswertung der intemen Lieferbeziehungen die Produktionsfunktion des Gesamtuntemehrnens in input­orientierter Darstellung, d.h. der je Endprodukteinheit insgesarnt erforderliche Einsatz an den originaren Produktionsfaktoren, ermitteln:

xl = 10rl +4,5r2 +r3 +5r4

x2 = 8rl + lOr2 +4r3+19r4

Diese Vorgehensweise, die sich nicht nur fUr die originaren, sondem auch fUr die derivativen Produktionsfaktoren einsetzen laSt, entspricht dern analytischen Vor­gang der Stucklistenauflosung in der Materialwirtschaft, bei der ein Endprodukt sukzessiv fiber sarntliche Produktionsstufen hinweg in seine Baugruppen, Bau­teile und Einzelteile zerlegt wird (vgl. KISTNER! STEVEN [1993a], S. 208 ff.). Die urngekehrte synthetische Betrachtungsweise und die zugehOrige outputorientierte Darstellung, die angibt, welche Produktionsrnengen mit einer Einheit der originii­ren Produktionsfaktoren erzeugt werden kannen, laBt sich dernentsprechend als Teileverwendungsnachweis interpretieren. Die zugeharigen Gleichungen lauten allgernein:

Page 221: Produktionstheorie ||

210 3. Betriebswirtschaftliche Produktionsfunktionen

Yj = L aijxi ieN(j)

Dabei bezeichnet N (j) die Menge aller Produktionsstellen, an die die Stelle j ihre Produkte liefert.

1m vorliegenden Beispiellauten die entsprechenden Input/Output-Gleichungen:

Yl = 4 Ys Y7 = 2 Y9 + YlO

Y2=Ys+2Y6 Yg=0,5Y6+ 2Yll

Y3 = Y6

Y4 = 3Y6 + Y7

Ys = Yg

Y6 = Y9 + Y12

Y9 = Yll + 3Y12

YlO = Y12 + YIS

Yll = Y13

Y12 =Y14

Durch eine sukzessive Vorwartsrechnung erhalt man fUr das vorliegende Beispiel die folgenden Beziehungen, die einer outputorientierten Produktionsfunktion des Untemehmens entsprechen:

rl = IOxl +8x2

r2 = 4,5xl + IOx2

r3 = xl +4X2

r4 = 5Xl + 19x2 +X3

Jede Zeile der Input/Output-Matrix entspricht der StUckliste des jeweiligen Teils, jede Spalte laBt sich als sein Verwendungsnachweis interpretieren. Die In­put/Output-Matrix ist somit eine kompakte Darstellungsform fUr die im Unter­nehmen bestehenden materialwirtschaftlichen Beziehungen.

3.3.2.3 Transformationsfunktionen

Bislang wurde implizit davon ausgegangen, daB die Mengenbeziehungen inner­halb der Produktionsstellen linear-limitational sind, d.h. es wurde eine LEON­

TIEFF-Produktionsfunktion zugrunde gelegt. Da diese Annahme eine erhebliche Einschrankung des Einsatzbereichs der Input/Output-Analyse bedeuten wUrde, wird sie im folgenden zugunsten einer allgemeinen Transformationsfunktion, die die Beziehungen zwischen Input und Output einer Produktionsstelle beschreibt,

Page 222: Produktionstheorie ||

3.3 Die betriebswirtschaftliche Input/Output-Analyse 211

fallengelassen. Die Einsatzmenge von Gut i in Stelle j HiBt sich dann allgemein beschreiben als:

Yij = fij( ... )· Yj

f ij steht dabei zunachst fUr eine allgemeine, lineare oder auch nichtlineare, Funktion. In Abhangigkeit davon, wie diese Transformationsfunktion spezifiziert wird, lassen sich samtliche bislang behandelten Produktionsmodelle mit Hilfe des InputlOutput-Modells darstellen (vgl. KLOOCK [1969b], S. 64 ff.; KOPPER

[1976], S. 505 ff.; ZAPFEL [1996], S. 28):

(1) Nimmt man den bereits zuvor unterstellten linear-limitationalen Zusarnmen­hang an, so erhalt man eine LEONTIEFF-Produktionsfunktion, bei der der kon­stante Produktionskoeffizient aij den Zusarnmenhang zwischen Input und Output beschreibt:

(2) Eine ertragsgesetzliche Produktionsfunktion mit mengenmaBigen Interde­pendenzen zwischen den betrachteten Giitem laBt sich wie folgt abbilden:

Yij = fij(1, Ylj , ... ,Ynj].Yj Yj Yj

(3) Definiert man die Transformationsfunktionen in Abhangigkeit von der Inten­sitat d j' mit der die Produktionsstellen ihre Leistung erbringen, so ergeben sich die Faktoreinsatzfunktionen der GUTENBERG-Produktionsfunktion:

Yij =fij(dj)·Yj

(4) Ftihrt man als weitere EinfluBgroBen die LosgroBe x, die Dauer einer Ele­mentarkombination t, den AusschuBkoeffizienten a und den Verteilungspa­rameter vein, so entspricht die Transformationsfunktion einer HEINEN­Produktionsfunktion:

Yij = fij(L,x,t,a, v)· Y j

(5) Die allgemeinste Formulierung der Produktionsfunktion yom Typ D ergibt sich, wenn man die Transformationsfunktion in Abhangigkeit von beliebigen, zunachst nicht naher spezifizierten EinfluBgroBen ek definiert:

Yij = fij(el ,e2,···,eK)· Y j

Page 223: Produktionstheorie ||

212 3. Betriebswirtschaftliche Produktionsfunktionen

Als EinfluBgroBen kommen dabei tiber die bereits explizit genannten GroBen hinaus z.B. technische Parameter und Einsatzbedingungen, wie sie bei HEINEN in der f. -, u- und z-Situation abgebildet werden, in Frage.

Je realistischer die Transformationsfunktionen modelliert werden, desto mathe­matisch anspruchsvoller werden die sich daraus ergebenden Input/Output­Modelle, und desto schwieriger wird die mathematische Behandlung mit Hilfe der im nachfolgenden Abschnitt dargestellten Rechenverfahren.

3.3.3 Anwendung der Input/Output-Analyse

Die in Abschnitt 3.3.2.2 fiir das dort angegebene Beispiel durchgeftihrte sukzes­sive Berechnung von Bedarfsmengen fUr alle Produktionsstellen ist nur im Fall einer zyklenfreien Produktionsstruktur moglich. Fiir den allgemeinen Fall sind andere, auf dem Matrizenkalkiil beruhende Rechenverfahren heranzuziehen. In Abschnitt 3.3.3.1 wird zunachst das fiir die Mengenplanung eingesetzte Produk­tionsmodell dargestellt, anschlieBend in Abschnitt 3.3.3.2 das dazu duale Ko­stenmodell.

3.3.3.1 Produktionsmodell

Bislang wurden lediglich die Input/Output-Beziehungen einzelner Produktions­stellen betrachtet. Ftir die benotigte Einsatzmenge von Gut i in Stelle j gilt die Beziehung:

Yij = fil·} Y j

Die im ProduktionsprozeB insgesamt benotigte Menge von Gut i ergibt sich als Summe der Verbrauchsmengen in samtlichen Produktionsstellen. Hinzu kann noch ein extemer Bedarf xi treten - dieser wird in der Input/Output-Analyse als PrimiirbedarJbezeichnet -, falls es sich um ein am Markt nachgefragtes Gut han­delt.

n n Yi = LYij +xi = Lfij( ... )· Yj +xi i =l, ... ,n

j=l j=l

Die Input/Output-Beziehungen im Untemehmen lassen sich also durch ein Sy­stem linearer Gleichungen abbilden:

Page 224: Produktionstheorie ||

3.3 Die betriebswirtschaftliche Input/Output-Analyse 213

Y1 = f11 ( ... ). Y1 + h2("')' Y2 + ... + f1n("')' Yn +x1

Y2 = 121("')' Y1 + 122("')' Y2 + ... + hn( .. ·)· Yn +X2

Yn = fn1("')' Y1 + fn2("')' Y2 + ... + fnn( .. ·)· Yn +Xn

Aquivalent zu der Gleichungsschreibweise ist eine Darstellung als Matrizenglei­chung moglich:

Y1 f11("') f12("') ftn( .. ·) Y1 xl

Y2 121("') 122("') hn( .. ·) Y2 +

X2 =

Yn f nl("') fn2("') fnn( .. ·) Yn Xn

Diese lautet in verkiirzter Schreibweise:

y=F·y+~. - -Dabei gibt die Input/Output-Matrix oder Direktbedaifsmatrix F die funktionalen Beziehungen zwischen den Produktionsstellen an; ~ ist der Primarbedarfsvektor und l der Gesamtbedarfsvektor. LOst man diese Beziehung nach l auf, so ergibt sich formal:

~=(E-F)'l

~ l.=(E-Fr1.~= G·~ (*)

Die Matrix G wird als Gesamtbedaifsmatrix bezeichnet; ihre Koeffizienten g ij geben an, wie hoch der gesamte Bedarf von Gut i je produzierter Einheit von Gut jist. 1m allgemeinen Fall sind diese Koeffizienten wiederum Funktionen, im ein­fachsten Fall, d.h. bei der LEONTIEFF-Produktionsfunktion, haben sie skalare Werte.

Voraussetzung fUr eine eindeutige LOsung des Gleichungssystems (*) ist, daB die dort angegebene Inverse existiert und zu einer nicht-negativen Gesamtbedarfs­matrix fiihrt (vgl. KISTNER [1993a], S. 195 ff.):

G=(E- Fr 1 ~Q

Dies ist genau dann der Fall, wenn die Direktbedarfsmatrix F produktiv ist. Die Produktivitiit einer quadratischen Matrix lliBt sich mit Hilfe folgender aquivalen­ter Bedingungen tiberpriifen:

Page 225: Produktionstheorie ||

214 3. Betriebswirtschaftliche Produktionsfunktionen

(1) Fiir einen beliebigen, strikt positiven Nettobedarfsvektor muB ein nieht-negativer Bruttobedarfsvektor existieren.

:!>Q ~ :!=(E-F).x. mit: y~Q

(2) Fiir jeden nieht-negativen Nettobedarfsvektor muB ein nieht-negativer Brut-tobedarfsvektor existieren.

:!~Q ~ :!=(E-F).x. mit: y~Q

(3) Die Determinanten aller Nordwest-Hauptminoren der Teehnologiematrix (E - F) mlissen strikt positiv sein (HAWKINS-SIMON-Bedingung).

(4) Es muB eine nieht-negative Inverse der Teehnologiematrix existieren.

(E-Fr1 ~Q Die ProduktivWit der Direktbedarfsmatrix bedeutet somit, daB das Produktionssy-stem insgesamt positive Leistungen naeh auBen abgeben kann bzw. daB der Ei-genverbraueh geringer ist als die Produktionsleistung.

Flir das in Abbildung 77 eingefiihrte Beispiel ergibt sich die in Abbildung 80 dargestellte Gesamtbedarfsmatrix G.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 1 1 0 0 0 4 2 0 4 2 0 10 8 10 8 0 2 0 1 0 0 1 2,5 0 1 2,5 0 4,5 10 4,5 10 0 3 0 0 1 0 0 1 0 0 1 0 1 4 1 4 0 4 0 0 0 1 0 3 1 0 5 1 5 19 5 19 1 5 0 0 0 0 1 0,5 0 1 0,5 0 2,5 2 2,5 2 0 6 0 0 0 0 0 1 0 0 1 0 1 4 1 4 0 7 0 0 0 0 0 0 1 0 2 1 2 7 2 7 1 8 0 0 0 0 0 0,5 0 1 0,5 0 2,5 2 2,5 2 0 9 0 0 0 0 0 0 0 0 1 0 1 3 1 3 0 10 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 11 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 12 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Abb. 80: Gesamtbedarfsmatrix

Page 226: Produktionstheorie ||

3.3 Die betriebswirtschaftliche Input/Output-Analyse

Damit lassen sich fiber die Beziehung

Y =G·;!

215

ffir die gegebene Produktionsstruktur zu jedem Nettobedarfsvektor ;! an Endpro­dukten die zu seiner Produktion erforderlichen Mengen l an Zwischenprodukten und originaren Produktionsfaktoren bestimmen. Exteme Nachfrage bzw. Primar­bedarf kann nicht nur fUr die Endprodukte auftreten, sondem auch ffir Zwischen­produkte, wenn diese z.B. als Ersatzteile verkauft werden.

1m angegebenen Beispiel ergeben sich z.B. ffir geplante Absatzmengen in Hohe von 20 StUck von Produkt I, 12 StUck von Produkt 2 und 40 StUck von Produkt 3 folgende Bruttobedarfsmengen:

YIS = 40

Y14 = 12

Y13 = 20

Yl2 = 12

Yll = 20

YlO =52

Y9 =56

Ys =74

Y7 = 164

Y6 =68

Ys =74

Y4 = 368

Y3 =68

Y2 = 210

Yl = 296

Ffir die vorliegende nicht-zyklische Produktionsstruktur kommt man fiber die sukzessive Berechnung der Gesamtbedarfsmengen nach dem in Abschnitt 3.3.2.2 angegebenen Verfahren zu demselben Ergebnis. Ffir den allgemeinen Fall mit gegenseitiger Belieferung der Produktionsstellen ist jedoch die hier angegebene Vorgehensweise fiber die Matrixinversion erforderlich. I Allerdings stoBt dieses Vorgehen auf erhebliche numerische Probleme, wenn es sich bei den Transfor­mationsfunktionen nicht um Produktionskoeffizienten, sondem um komplexere Funktionen handelt, wie sie in Abschnitt 3.3.2.3 diskutiert worden sind.

1 Zur numerischen Berechnung von Gesamtbedarfsmengen sowohl bei nicht-zyklischen als auch bei zyklischen Produktionsstrukturen mit Hilfe eines Tabellenkalkulationsprogramms vgl. WALL [1994], S. 294 f.; vgl. auch WAGNER [1992].

Page 227: Produktionstheorie ||

216 3. Betriebswirtschaftliche Produktionsfunktionen

3.3.3.2 Kostenmodell

Die Input/Output-Analyse laBt sich nicht nur fur die Planung des fUr ein be­stimmtes Produktionsprogramm erforderlichen Bedarfs an Rohstoffen und Teilen einsetzen, sondem auch im Rahmen der Kostenrechnung zur Bestimmung von Verrechnungspreisen ffir die innerbetrieblich erstellten Leistungen sowie von Preisuntergrenzen fUr die Endprodukte. Die zuvor analysierten Input/Output­Beziehungen bilden das Mengengeriist ffir die innerbetriebliche Leistungsver­rechnung (vgl. z.B. KISTNER [1993a], S. 194 ff.; KISTNER! STEVEN [1997], S. 92 ff.). Nach dem Prinzip der vollstandigen Kostenuberwruzung laBt sich ffir jede Produktionsstelle eine Wertgleichung so aufstellen, daB ihre bewertete Leistungs­abgabe der Summe der bewerteten, von ihr in Anspruch genommenen Leistungen anderer Stellen oder an Produktionsfaktoren entspricht:

n

Yj"Pj = Llij(..}Yj"Pi+Yj"qj i=l

mit: P j : intemer Verrechnungspreis der Stelle j

q j : Einkaufspreis des Produktionsfaktors j

j=l, ... ,n

Dividiert man durch Y j > 0, so erhaIt man eine Beziehung, die unabhangig von den jeweils eingesetzten bzw. hergestellten Mengen ist:

n

Pj = Llij(..} Pi +qj j=l, ... ,n i=l

Ffir die Bewertung der Produktionsleistungen erhalt man somit - analog zu der Vorgehensweise beim Produktionsmodell- als Kostenmodell ein System linearer Gleichungen, dessen Koeffizienten der transponierten Direktbedarfsmatrix des Produktionsmodells entsprechen. FaBt man wiederum die Gleichungen fur die einzelnen Stellen zu einer Vektorgleichung zusammen, so ergibt sich:

!!.. = F'l! .. + fJ.

Durch Auflosen dieser Gleichung nach den gesuchten Verrechnungspreisen P ergibt sich:

fJ. = (E - F').!!..

¢:} !!.. = (E - FTI . fJ. = G' . fJ.

Page 228: Produktionstheorie ||

3.3 Die betriebswirtschaJtliche Input/Output-Analyse 217

Die Verrechnungspreise lassen sich also berechnen, indem man die externen Preise der Produktionsfaktoren mit der transponierten Gesamtbedarfsmatrix mul­tipliziert. Da beide Gleichungssysteme auf derselben Input/Output-Matrix basie­ren, weist das Kostenmodell genau dann eine LOsung auf, wenn auch das Pro­duktionsmodell eindeutig losbar ist. Bei zyklenfreien Produktionsstrukturen kann alternativ zu der Matrixinversion wiederum eine sukzessive Berechnung der Ver­rechnungspreise erfolgen, die der Vorgehensweise des Stufenleiterverfahrens in der Kostenrechnung entspricht.

Ffir das oben eingefuhrte Beispiel werden folgende Preise ffir die extern bezoge­nen Produktionsfaktoren angenommen:

ql =5 q3 =8

q2 = 10 q4 = 1

Dorch sukzessive oder simultane Berechnung ergeben sich dann folgende Ver­rechnungspreise fUr die innerbetrieblichen Leistungen bzw. Preisuntergrenzen ffir die Endprodukte:

qs =30

q6 =46

q7 = 1

qg =30

q9 =48

qlQ = 1

q12 = 191

q13 = 108

q14 = 191

Um die Kosten der eingesetzten Vorprodukte und Bauteile decken zu konnen, mussen je Einheit von Produkt 1 mindestens 108 Geldeinheiten als Erlos erzielt werden, bei Produkt 2 mindestens 191 Geldeinheiten und bei Produkt 3 minde­stens 1 Geldeinheit. Sollen zusatzlich zu den hier erfaBten Materialkosten die in den einzelnen Produktionsstellen anfallenden Fertigungskosten - z.B. Lohne und Anlagenkosten - beriicksichtigt werden, so lassen sich diese ffir die Stelle j formal in den externen Kosten q j erfassen.

Page 229: Produktionstheorie ||

218 3. Betriebswirtschaftliche Produktionsfunktionen

3.3.4 Beurteilung der betriebswirtschaftlichen Input/Output-Analyse

Die betriebswirtschaftliche Input/Output-Analyse ist ein produktionstheoretischer Ansatz, der sich zur Abbildung beliebiger Produktionsstrukturen auf unter­schiedlichem Aggregationsniveau eignet und die bisher diskutierten Produk­tionsfunktionen als SpezialfaIle enthaIt. Somit weist sie einen groBen Anwen­dungsbereich auf. FUr den einfachsten Fall linear-limitationaler Mengenbezie­hungen zwischen den Produktionsstellen UiBt sich der Ansatz zur simultanen Be­stimmung von Gesamtverbrauchsmengen bzw. von innerbetrieblichen Verrech­nungspreisen einsetzen. Bei komplexeren, z.B. nichtlinearen Beziehungen hinge­gen treten Probleme sowohl hinsichtlich der Existenz als auch hinsichtlich der numerischen Bestimmbarkeit der Gesamtbedarfsmatrix auf.

Mit Hilfe der Input/Output-Gleichungen lassen sich die Giiterfliisse im Unter­nehmen recht exakt abbilden und analysieren. Auch Entscheidungen aus dem Be­reich der Produktionsplanung, wie die Stiicklistenauflosung und andere Bereiche der Materialwirtschaft, werden durch diesen produktionstheoretischen Ansatz unterstiitzt. Durch die Dualitat von Produktions- und Kostenmodell lassen sich gleichzeitig innerbetriebliche Verrechnungspreise fiir samtliche Produktionsstel­len ermitteln. Mit Hilfe zyklischer Produktionsstrukturen kann auch das innerbe­triebliche Recycling abgebildet werden (vgl. JAHNKE [1986], S. 120 ff.). Das Modell weist somit nicht nur einen hohen Erklarungswert auf, sondem ist auch fiir den praktischen Einsatz bei den entsprechenden Planungsproblemen geeignet.

Page 230: Produktionstheorie ||

219

4. Dynamiscbe Produktionsfunktionen Die bislang behandelten Ansatze der Produktionstheorie beschriinken sich auf die Darstellung von betrieblichen Sachverhalten und produktiven Beziehungen in einem bestimmten Zeitpunkt, sie vemachlassigen jedoch weitgehend solche Vor­gange und Entwicklungen, die sich im ZeitablauJ vollziehen. Sie werden daher als statische Produktionsfunktionen bezeichnet.

1m Zuge des Bestrebens, das betriebliche Geschehen durch die Produktionstheo­rie immer detaillierter und realitatsniiher abzubilden, wurden die nachfolgend dargestellten Modelle der dynamischen Produktionstheorie entwickelt. Die Erfas­sung des Zeitablaufs kann in unterschiedlichem Umfang erfolgen (vgl. zur Ab­grenzung von statischen und dynamischen Modellen Abschnitt 1.2.4):

• Kurifristige dynamische Produktionsfunktionen, wie sie in Abschnitt 4.1 be­handelt werden, beriicksichtigen in der Produktivitiitsbeziehung neben dem Faktoreinsatz explizit die Zeit als EinfluBgroBe:

x=J(r,t)

• In einer langfristigen dynamischen Produktionstheorie, die Gegenstand von Abschnitt 4.2 ist, wird dariiber hinaus die Zeitabhangigkeit der Produktionsbe­dingungen, von denen der Faktoreinsatz nicht unwesentlich abhangt, beriick­sichtigt:

x = J(r(t),t)

Einen Uberblick tiber weitere Entwicklungen der dynamischen Produktionstheo­rie gibt Abschnitt 4.3.

4.1 Kurzfristige dynamische Produktionsfunktionen Die im folgenden dargestellten kurifristigen dynamischen Produktionsfunktionen bauen direkt auf der im vorhergehenden Kapitel behandelten betriebswirtschaftli­chen Input/Output-Analyse auf. Uber die Dynamisierung dieses Ansatzes durch die explizite Einbeziehung der zeitlichen Struktur von Entscheidungen und Ab­laufen hinaus nehmen sie eine Integration des Produktionsbereichs mit weiteren betrieblichen Funktionsbereichen vor.

In Abschnitt 4.1.1 wird der auch als Produktionsfunktion vom Typ E bezeichnete Ansatz von KOPPER dargestellt, in Abschnitt 4.1.2 die nochmals dariiber hinaus­gehende Produktionsfunktion vom Typ F von MATfHES.

Page 231: Produktionstheorie ||

220 4. Dynamische Produktionsfunktionen

4.1.1 Die Produktionsfunktion von KUPPER

4.1.1.1 Ausgangspunkt

Ausgangspunkt einer dynamischen Produktionsfunktion ist die Tatsache, daB sich Giiterzugang, Transformation und Giiterabgang im Zeitablauf vollziehen. So steht auch bei der 1979 von KUPPER entwickelten Produktionsfunktion vom Typ E die Notwendigkeit der Abbildung von Produktionsprozessen im Zeitablauf im Vordergrund. Erst durch einen dynamischen Ansatz lassen sich nicht nur Zustan­de, sondem auch Entwicklungen von Bestanden, Auslastungsgraden, Leistungs­intensitiiten, Abnutzung usw. explizit erfassen. Zeitbeziehungen im Produktions­ablaufkommen z.B. in folgenden betrieblichen Sachverhalten zum Ausdruck:

• Aufgrund der begrenzten Kapazitiit der Fertigungsanlagen ist auch die wiih­rend einer Peri ode mogliche Produktionsmenge beschriinkt. Es ist daher eine zeitliche Verteilung der geplanten Produktion erforderlich. Die Produktion muS so frUb beginnen, daB die gesamte Bedarfsmenge im geplanten Zeitpunkt zur Verfiigung steht.

• Bei mehrstufiger Fertigung ist dariiber hinaus zu beriicksichtigen, daB die Pro­duktion der Zwischenprodukte umso friiher beginnen muS, je weiter sich die zugehOrige Produktionsstufe am Anfang des betrieblichen Materialflusses be­findet (Vorlaufverschiebung).

• Bei losweiser Fertigung und geschlossener Werkstuckweitergabe ist die erfor­derliche Vorlaufverschiebung groSer als bei offener Werkstiickweitergabe, da die Verweildauer auf jeder Produktionsstufe ausreichen muS, urn das gesamte Los zu bearbeiten.

• Weiter ist bei losweiser Fertigung der Zeitverlust durch Rustvorgiinge zu be­riicksichtigen. Auch Wartung und Instandsetzung von Fertigungsanlagen sind zeitbeanspruchende Vorgiinge, die sich auf die verfugbare Periodenkapazitiit auswirken.

• Die wiihrend einer Periode herzustellende Menge hangt nicht nur von der Nachfragesituation, sondem auch vom Zustand am Periodenbeginn abo Durch den Auf- und Abbau von Lagerbestanden lassen sich Produktion und Nachfra­ge entkoppeln. Die einfachste Form einer dynamischen Beziehung ist die La­gerbilanzgleichung, die den Lagerbestand Yt in einem bestimmten Zeitpunkt in Abhangigkeit vom Bestand der Vorperiode Yt-l, dem Zugang durch Pro­duktion Xt und dem Abgang durch Nachfrage dt beschreibt:

Page 232: Produktionstheorie ||

4.1 Kurifristige dynamische Produktionsfunktionen 221

Yt = Yt-l +xt -dt

• Bei der Sorten- und Serienfertigung konkurrieren die Produkte urn die knappen KapaziUiten, so daB zusatzlich die Reihenfolge der Fertigung festzulegen ist. Aufgrund von technologisch vorgegebenen Reihenfolgebedingungen lassen sich Wartezeiten bei den Produkten und Leerzeiten bei den Fertigungsanlagen nicht vermeiden.

Dariiber hinaus bestehen langfristige zeitliche Entwicklungen, wie die Abnutzung von Anlagen, Lemeffekte bei den Mitarbeitem, Veranderungen im Produktions­programm oder der technische Fortschritt, die sich ebenfalls nur mit dynamischen Modellen angemessen erfassen lassen.

Fili die Beriicksichtigung des Zeitablaufs in Produktionsmodellen bestehen zwei prinzipielle Moglichkeiten (vgl. STEVEN [1994d], S. 145):

(1) Bei einem Produktionszeitenmodell wird der Zeitablauf kontinuierlich abge­bildet. Die Variablen dieses Modells entsprechen z.B. den Fertigungs-, War­te- und Leerzeiten. Jede Einlastung eines Auftrags oder Beendigung einer Bearbeitung lost eine Veranderung der entsprechenden Variablen aus. Da­durch lassen sich die LosgroSen als wahrend eines Fertigungsvorgangs her­gestellte Mengen darstellen und auch die Auftragsfolgen auf den Maschinen unmittelbar abbilden. Ein Produktionszeitenmodell stellt jedoch hohe Anfor­derungen an die exakte Prognose der Zeitpunkte, zu denen die Zustandsande­rungen auftreten.

(2) Fili ein Produktionsmengenmodell muS der kontinuierliche Zeitablauf dis­kretisiert, d.h. in Perioden gleicher oder auch variabler Lange eingeteilt wer­den. Die Variablen eines solchen Modells bilden die Einsatz-, Ausbringungs­und Lagermengen sowie binare Bearbeitungs- und Umriistvariablen perio­denbezogen ab; sie konnen sich auf den Zustand am Periodenanfang, am Pe­riodenende oder auf den durchschnittlichen Bestand beziehen. Da von jedem Variablentyp in jeder Periode eine Realisation moglich ist, ergibt sich bei ei­nem Produktionsmengenmodell schon fUr kleine ProblemgroBen ein erhebli­cher Modellumfang.

4.1.1.2 Grundmodell

KUPPER geht bei der Dynamisierung des in Abschnitt 3.3 dargestellten In­putJOutput-Ansatzes von einem Produktionsmengenmodell aus, dabei teilt er den problemabhangig zu definierenden Planungshorizont T in gleich lange Teilperio-

Page 233: Produktionstheorie ||

222 4. Dynamische Produktionsfunktionen

den ein (vgl. KUPPER [1980], S. 80 ff.). Jede im Input/Output-Modell auftretende Gliterart wird dureh einen zusatzliehen Periodenindex naeh ihrer Periodenzuge­horigkeit differenziert. Die Gleiehungen fUr das Produktionsmodelliauten somit:

t t t t t [t [t-1 Y1 = Yu + Y12 + ... + YIn + Xl + 1 - 1

t t t t t [t [t-1 Y2 = hI + Y22 + ... + Y2n + x2 + 2 - 2

t t t t t [t [t-1 Yi = Yil + Yn + ... + Yin + Xi + i - i t= 1, ... ,T

t t t t t [t [t-1 Yn = Yn1 + Yn2 + ... + Ynn + xn + n - n

Dabei steht yij fUr die in der Periode tin Produktionsstelle j benotigte Menge

von Produkt i. Die in Periode t hergestellte Menge von Produkt i, yf, wird einge­

setzt, urn damit in den anderen Produktionsstellen zu produzieren (yf1, ... ,yfn)

und die exteme Naehfrage xf abzudeeken. Weiter werden Lagerbestandsveriin­derungen berlieksiehtigt, [t 1 bezeichnet den Lagerbestand von Produkt i am

Periodenbeginn und [f den Lagerbestand am Periodenende. FUr nieht lagerfiihige

Einsatzfaktoren, wie mensehliehe Arbeitskraft oder die Abgabe von Maschinen­

leistungen, nehmen diese Variablen den Wert Null an. Durch die Berlicksiehti­

gung des Auf- und Abbaus von LagerbesUinden findet bereits eine Verknlipfung

von aufeinander folgenden Perioden statt.

Die Dynamik des produktionswirtschaftliehen Gesehehens kommt weiterhin in der Dauer der einzelnen Teilprozesse zum Ausdruck, die in der jeweiligen Trans­formationsfunktion berlieksiehtigt werden muS:

t t:9() t+9 Yij =Jij ... ·Yj

Dies bedeutet, daB der Einsatz der Menge yij von Produkt i im TeilprozeB j in der Periode t zu einer Ausbringung dieses Teilprozesses naeh 9 Teilperioden flihrt. Die Dauer des Transformationsprozesses hangt in erster Linie von der Pro­duktionsgesehwindigkeit ab, mit der der ProzeS j Uiuft: Je hoher die Produktions­geschwindigkeit, desto mehr Produkte konnen je Zeiteinheit gefertigt werden und desto ktirzer ist die Verweilzeit 9.

In Abhangigkeit von der Art der Weitergabe der Werksrueke lassen sieh drei Mo­delltypen unterseheiden:

Page 234: Produktionstheorie ||

4.1 Ku17jristige dynamische Produktionsfunktionen 223

(1) offene Produktion

Bei der offenen Produktion wird jedes Werkstiick, das in ProzeB j bearbeitet worden ist, sofort an die nachste Produktionsstufe weitergegeben. Bei ausrei­chend groBer Periodenlange werden die meisten Werkstiicke innerhalb einer Periode gefertigt und weitergegeben, so daB mit hinreichender Genauigkeit von einer Verweilzeit von Null ausgegangen werden kann. Damit ergeben sich iihnliche Transformationsfunktionen wie im statischen Input/Output­Modell:

yij = fiJ ( ... ). yj

Die Grundgleichung der dynamischen Input/Output-Theorie lautet in diesem Fall:

n 1 "'" I'O() 1 1 zt Zt-l Yi = £.JJij ... 'Yj+xi + i - i i = 1, ... ,n

j=1

Dynamische Beziehungen konnen in diesem Modell nur aufgrund von Lager­bestandsveranderungen auftreten.

(2) geschZossene Produktion

Geschlossene Produktion bedeutet im einfachsten Fall, daB die Weitergabe des wiihrend einer Peri ode gefertigten Teilloses jeweils nach AbschluB der Teilperiode erfolgt. Die Transformationsfunktionen weisen daher eine Ver­zogerung von einer Zeiteinheit auf; die zur Herstellung von Produkt j beno­tigten Einsatzmengen der anderen Gtiterarten mtissen jeweils eine Periode zuvor bereitgestellt werden (Vorlaufverschiebung).

t 1'1() 1+1 Yij = J ij .... Y j

Die Grundgleichung fUr den zweiten Modelltyp der dynamischen In­put/Output-Theorie lautet:

n 1 "'" 1'1() 1+1 I ZI ZI-l Yi = £.JJij ... 'Yj +Xi + i - i i = 1, ... ,n

j=1

Bei diesem Modelltyp bestehen dynamische Beziehungen sowohl tiber die Lagerbestandsveranderungen als auch tiber die Vorlaufverschiebung im Pro­duktionsbereich.

Page 235: Produktionstheorie ||

224 4. Dynamische Produktionsfunktionen

(3) allgemeiner Fall

Der dritte Modelltyp ergibt sich als Kombination aus den beiden zuvor ge­nannten Ansiitzen. In verschiedenen Teilprozessen und fiir verschiedene Ein­satzfaktoren konnen Verweilzeiten unterschiedlicher Lange aus dem Intervall [0, ... ,8] auftreten. Daher gilt fUr die Transformationsfunktionen:

()

t "" I'T() t+T Yij = £.J J ij .... Y j T=O

Die zugehorige Grundgleichung lautet:

() n t "" "" I'T() t+T t [t [t-l Yi = £.J £.JJij ... ·Yj +xi + i - i

T=O j=1

i =l, ... ,n

Hierbei kann auch der Fall auftreten, daB die Einsatzmenge eines Gutes j im ProzeB i aus verschiedenen Perioden stammt.

Analog zur Vorgehensweise im statischen Input/Output-Ansatz laBt sich fiir jeden dieser Modelltypen eine dynamische Produktionsfunktion aufstellen. Die dabei erforderlichen Schritte werden nachfolgend anhand des zweiten Modelltyps dar­gestellt und im nachsten Abschnitt anhand eines Beispiels veranschaulicht. Fiir jede Periode t ergibt sich ein Gleichungssystem der folgenden Art (vgl. KUPPER

[1980], S. 88 ff.):

FaSt man die in den Transformationsfunktionen fJ( ... ) enthaltenen funktionalen Beziehungen zwischen Input- und Outputmengen der Periode tin der Direktver­brauchsmatrix F 1 zusammen, so ergibt sich in Vektorschreibweise:

t _ F t+l + t + [t [t-l I - -1 . I :! - -- t=l, ... ,T

Aufgrund der Verweilzeit der Werksrucke auf den Produktionsstufen von jeweils einer Periode sind zur Abbildung eines Planungshorizonts von T Perioden insge­samt T + 1 Gleichungen erforderlich. Die erste Gleichung bildet ab, wie sich der am Beginn der ersten Periode verftigbare Lagerbestand £0 aus dem im Planungs­zeitpunkt vorhandenen Bestand [ abztiglich der zu Beginn der Produktion einzu­setzenden Gtitermengen I I ergibt:

Page 236: Produktionstheorie ||

4,1 KunJristige dynamische Produktionsfunktionen

o A 1 £ =L-F1,x,

Das gesamte Gleichungssystem fUr den Planungszeitraum lautet:

Q 1 F1 'x,

2 F1 'x,

3 = F 1 ,x, +

T F 1 'x,

Q

Q

+ e (-2 ZT-1

225

Aufgrund der Zeitverzogerung urn jeweils eine Periode ist dieses Gleichungssy­stem rekursiv lOsbar: Setzt man die LOsung fUr die letzte Periode

yT =~T +£T _£T-1

in die Gleichung der vorletzten Periode ein, so erhaIt man:

x,T-1 = F1 ,(~T +( _(-1)+(~T-1 +£T-1_£T-2)

Fiir die Periode T-2 ergibt sich entsprechend:

x,T-2 =(F1)2 ,(~T +£T -£T-l)+F1 ,(~T-1 +(-I_£T-2)+

+(~T-2 +£T-2 _(-3)

Allgemein gilt:

T-t l = L (Fd't' ,(~tH +£tH _£tH-l) 't'=0

bzw,

Q E Fl F2 FT- 1 FT Q+£O -l yl

-1 -1 -1 Q E F1 FT- 2 FT- 1 ~1 +£1_£0 -1 -1

l Q Q E FT- 3 FT- 2 ~2 +e _£1 = -1 -1

Y T-l

Q Q Q E Fl T-l ZT-l ZT-2 ~ + - --

yT 0 0 0 0 E ~T +IT _(-1

Page 237: Produktionstheorie ||

226 4. Dynamische Produktionsfunktionen

Dieses Gleichungssystem ist die dynamische Produktionsfunktion des Untemeh­mens fUr den Fall der geschlossenen Produktion. Dabei sind die am Beginn des Planungszeitraums vorhandenen Giitermengen f als Resultat von friiheren Ent­scheidungen gegeben; die Endlagerbestiinde f sind als Ausgangspunkt fUr spii­tere Planungen vorzugeben. Durch Aufspalten und Umstellen seiner Komponen­ten laBt sich das Gleichungssystem so umformen, daB die Abhiingigkeit der In­put- und Outputmengen von den Lagerbestiinden am Ende jeder Periode und von den Absatzmengen deutlich gemacht werden (vgl. KOPPER [1980], S. 90).

Q E-F1 F 1-Fi Fi-F~ Ff-I_Ff Ff [0

yI -E E-FI F 1-Fi Ff-2_Ff-I Ff-I II :l 0 - E E F F T- 3 F T- 2 F T- 2 [2 - - -1 -1 - -1 -1 =

Q Q Q E-FI FI

0 Q 0 -E E

f E FI F2 -1

F T- 1 -1

FT -1

Q

Q Q E F1 F T- 2 -1

F T- I -1

,!1

Q Q Q E +

F T- 3 -1

F T- 2 -1

,!2

0 Q Q Q E FI x T-I

Q Q Q Q Q E ,!T

Die Gleichungen dieser dynamischen Produktionsfunktion fUr die geschlossene Produktion beschreiben unter Beriicksichtigung von vorgegebenen Kapazitiitsbe­schriinkungen und Nicht-Negativitiitsbedingungen den zuliissigen Raum, inner­halb dessen die Produktion stattfinden kann. Aus der Menge der zuliissigen Zeit­pfade ist derjenige zu realisieren, der eine gegebene Zielfunktion, z.B. Kostenmi­nimierung, am besten erfullt.

4.1.1.3 Beispiel zur dynamiscben Produktionsfunktion

FUr die in Abbildung 81 dargestellte Produktionsstruktur (vgl. KOPPER [1980], S. 91 ff.) solI die dynamische Produktionsfunktion aufgestellt werden. Die Produk­tionsstruktur umfaBt einen BeschaffungsprozeB (1), vier Fertigungsprozesse (2, 3, 4,5) und drei Absatzprozesse (6, 7,8) fUr die Giiter aus den Produktionsstellen 2, 3 und 5. Beschriinkungen der Periodenkapazitiit sowie zeitliche Verzogerungen

Page 238: Produktionstheorie ||

4.1 Kunfristige dynamische Produktionsfunktionen 227

von Produktion und Absatz werden nicht beriicksichtigt. Daher entsprechen die Ausbringungsmengen der Prozesse 2, 3, und 5 den Absatzmengen der Prozesse 6, 7 und 8. 1m fibrigen gilt eine Verweilzeit von einer Periode fUr samtliche Teilpro­zesse. Der Planungszeitraum umfaBt vier Perioden. In Tabelle 7 sind die weiteren Daten des Beispiels zusammengestellt.

Abb. 81: Produktionsstruktur fUr das Beispiel

Tabelle 7: Daten des Beispiels

Gut i f. I Sicherheitsbestand in t = Absatzmenge in t = 0 1 2 3 4 1 2 3 4

1 300 0 0 0 0 300 0 0 0 0

2 380 20 10 20 10 200 5 30 10 0

3 560 20 10 20 10 150 5 30 10 0

4 40 10 10 10 5 100 0 0 0 0

5 21 10 10 20 5 30 10 60 10 0

Die Transformationsfunktionen sind LEONTIEFF-Produktionsfunktionen mit einer Verweilzeit e von einer Periode, d.h. die Pfeilbewertungen in Abb. 81 stellen die Produktionskoeffizienten dar.

yij = fJ( .. } yj+l = aij . yj+l

Bei VemachHissigung der Absatzprozesse erhaIt man fUr jede Periode ein Glei­chungssystem der folgenden Form:

Page 239: Produktionstheorie ||

228 4. Dynamische Produktionsfunktionen

yf 0 2 3 0 0 yf+l 0 I{ 1{-1

yi 0 0 0 1 2 yi+1 x~+1 Ii li-1

y~ = 0 0 0 3 0 y~+1 + xi+l + I~ - 1~-1

yl 0 0 0 0 3 yl+l 0 Il Il-1

y~ 0 0 0 0 0 y~+1 x~+1 I~ It 1

Urn in jeder Peri ode die Einhaltung der Sicherheitsbestande im Lager zu ge­wiihrleisten, wird die Variable 4 t eingefiihrt, die den in Periode t disponiblen Lagerbestand von Produkt i angibt. Der tatsachlich vorhandene, physische Lager­bestand ergibt sich somit als Summe aus dem nicht verfugbaren Sicherheitsbe­stand und dem disponiblen Lagerbestand.

t "t -t Ii =Ii +4

Die dynamische Produktionsfunktion ffir die angegebene Produktionsstruktur ergibt sich - unter Berticksichtigung dieser Definition - in Abhangigkeit von den Absatzmengen und den Sicherheitsbestanden in periodenorientierter Darstellung als:

El -Ff

E-Fl

-E Q

Q

,,0 1.. E Fl

Q 0 E - Q + Q Q

Q 0 Q Q Q Q

E~ -Ft Ft Ef -F~ F~ F1 -Ff Ef E-F1 Fl

-E E

F2 F3 F4 -1 -1 -1

F1 Ff F~ E E1 Ff Q E F1

Q Q E

Durch Einsetzen der in Tabelle 6 angegebenen Parameterwerte erhaIt man ein Gleichungssystem mit n· (T + 1) = 25 linearen Gleichungen, die die zulassigen Produktionsmoglichkeiten des Untemehmens beschreiben. Ffir eine konkrete Zielfunktion kann man mit Hilfe des Simplexverfahrens eine optimale LOsung bestimmen, die einen Produktions- und Lagerhaltungsplan ffir alle Teilperioden des betrachteten Planungsproblems darstellt.

Page 240: Produktionstheorie ||

4.1 Kurifristige dynamische Produktionsfunktionen 229

4.1.1.4 Erweiterungen

KOPPER selbst erweitert den bislang dargestellten Ansatz einer dynamischen Pro­duktionsfunktion in zwei Richtungen:

(1) Einbeziehung weiterer produktionswirtschaftlicher Tatbestiinde

(2) Abbildung von Interdependenzen zwischen der Produktion und der Autbau-organisation des Fertigungsbereichs

In dem in Abschnitt 4.1.1.2 dargestellten Grundmodell der dynamischen Produk­tionstheorie wurden zuniichst lediglich die zeitlichen Beziehungen innerhalb der Materialwirtschaft abgebildet, d.h. der Zusammenhang von Einsatzmengen, La­gerbestiinden und Absatzmengen bei mehrstufiger Produktion im Zeitablauf. Urn das produktionswirtschaftliche Geschehen hinreichend genau abzubilden, sind jedoch weitere Tatbestiinde explizit zu beriicksichtigen (vgl. KUPPER [1980], S. 101 ff.):

• Stellt eine Produktionsstelle nicht nur eine, sondem mehrere Produktarten her, so muB eine Planung der Bearbeitungsreihenfolge auf der Anlage erfolgen. Hierfiir ist eine Erweiterung des Grundmodells urn entsprechende Variablen fur die Verrichtungsarten und Restriktionen erforderlich. 1st andererseits die Durchfuhrung eines bestimmten Prozesses auf mehreren Anlagen moglich, so werden Variablen und Restriktionen benotigt, die die moglichen Altemativen bei der Arbeitsverteilung abbilden.

• Kann eine Produktionsstelle mit unterschiedlichen Intensitiitsgraden arbeiten, ist ebenfalls eine entsprechende Erweiterung des Modells erforderlich. Wenn fiir jeden Intensitiitsgrad eine Verrichtungsart definiert wird, ist bei kontinu­ierlicher Variation der Intensitiit jedoch nur eine approximative Abbildung des Produktionsgeschehens moglich.

• Die bislang nicht explizit beriicksichtigte Leistung der Produktionsanlagen muB in den Transformationsfunktionen abgebildet werden. Dabei konnen Ein­fluBgroBen wie Arbeitsintensitiit, AusschuBfaktoren und technische Parameter wie Temperatur, Druck, usw. beriicksichtigt werden.

• Die Zuordnung von Arbeitskriiften zu maschinellen Anlagen kann mit Hilfe einer mit Binarvariablen besetzten Strukturmatrix vorgenommen werden. Die Variablen nehmen immer dann den Wert 1 an, wenn eine bestimmte Arbeits­kraft an der betreffenden Anlage tiitig ist. Damit lassen sich auch Mehrfachbe­dienungen und Vertretungsverhiiltnisse modellieren.

Page 241: Produktionstheorie ||

230 4. Dynamische Produktionsfunktionen

• Weiter miissen die Kapazitiitsbeschriinkungen der Anlagen in den einzelnen Perioden, die sich z.B. wartungsbedingt unterscheiden konnen, formuliert wer­den. Auch Riistvorgiinge sowie der dadurch eintretende Kapazitatsverlust miis­sen mit Hilfe von Binarvariablen erfaBt werden. LosgroSen werden mit Hilfe von aufeinanderfolgenden Perioden, in denen dieselbe Giiterart hergestellt wird, abgebildet.

• Bei einer altemativen Formulierung als Produktionszeitenmodell lassen sich die Wege der einzelnen Auftrage durch die Fertigung anhand ihrer Bearbei­tungs- und Wartezeiten sowie die Zustande der Fertigungsanlagen anhand ih­rer Belegungs- und Leerzeiten abbilden.

Der von KOPPER gewahlte Ansatz ist dariiber hinaus in der Lage, auch aufbauor­ganisatorische Tatbestande abzubilden:

• Die riiumliche Anordnung der Fertigungsanlagen last sich implizit erfassen, indem die Variablen, die zu einer Fertigungseinheit gehOren, benachbart ange­ordnet und mit einem gemeinsamen zusatzlichen Index versehen werden. Do­miniert in der Fertigung das Objektprinzip, so werden die zu einem Stiickpro­zeS gehorenden Variablen entsprechend in Teilmatrizen erfaBt.

• Mit Hilfe einer Rohstoffeinsatzmatrix und einer Produktverflechtungsmatrix lassen sich verschiedene Proze.fJstrukturen charakterisieren. Auch zusammen­gesetzte Prozesse lassen sich abbilden, indem entsprechende Teilmatrizen her­angezogen werden.

• SchlieBlich laSt sich die Struktur des Fertigungsprogramms anhand des Ab­satzvektors und der Strukturmatrix abbilden. Dabei werden sowohl Absatz- als auch ProzeSverwandtschaften zwischen den Giitem transparent gemacht.

Diese Erweiterungen erfordem die Aufnahme immer weiterer Variablen und Re­striktionen bei der Abbildung in einem Planungsmodell. Damit bewirken sie eine Zunahme des Umfangs und - bedingt durch die steigende Anzahl von Binarvaria­bIen - auch der Komplexitat des Modells.

4.1.1.5 Beurteilung der Produktionsfunktion von KUPPER

Obwohl der Ansatz von KOPPER bereits zahlreiche Tatbestande und Vorgange im Produktionsbereich sehr detailliert abbildet, kann er durch seine Periodenorientie­rung und die daraus resultierende Annahme von konstanten ProzeBdauem und Verweilzeiten die Abliiufe innerhalb einer Teilperiode nicht erfassen. Damit blei­ben z.B. die durch AnpassungsmaBnahmen ausgelOsten Entwicklungen von Fak-

Page 242: Produktionstheorie ||

4.1 Kurifristige dynamische Produktionsfunktionen 231

toreinsatz- und Ausbringungsmengen innerhalb der Teilperiode, d.h. der exakte Produktionsablauf, auBerhalb der Darstellung.

Die dynamische Produktionsfunktion von KOPPER ist ein Beispiel fiir die immer weiter fortschreitende Verknupfung von Produktionstheorie und Produktionspla­nung. Sie zeigt, daB es durchaus moglich ist, (fast) beliebig fein differenzierte aufbau- und ablauforganisatorische Tatbestande in einem produktionstheoreti­schen Totalmodell abzubilden. Dabei werden insbesondere die Interdependenzen zwischen verschiedenen betrieblichen Entscheidungsbereichen, die in den im Be­reich der Produktionsplanung und -steuerung iiblichen Modellansatzen weitge­hend vemachlassigt werden (vgl. KISTNER I STEVEN [l993b], S. 269 ff.), explizit beriicksichtigt.

Jedoch stehen der unmittelbaren Umsetzung derartiger Totalmodelle in die be­triebliche Praxis folgende Hindernisse entgegen:

• Totalmodelle stoBen auf Probleme im Hinblick auf ihre Operationalisierbar­keit. Dies beruht insbesondere auf der groBen Zahl von Binarvariablen, die zur Modellierung von einander ausschlieBenden Altemativen bei Auflage- oder Reihenfolgeentscheidungen benotigt werden. Trotz erheblicher Fortschritte bei den Algorithmen und wachsender Verarbeitungsgeschwindigkeit und Spei­cherkapazitat bei der Hardware sind gemischt-ganzzahlige lineare Programme fiir praxisrelevante GroBenordnungen nicht bzw. nicht in angemessener Zeit losbar.

• Ein weiteres Problem stellt die Datenqualitiit und -aktualitiit dar. Bei dem fiir die Abbildung von Ablaufentscheidungen erforderlichen feinen Zeitraster ist es nicht moglich, samtliche fiir das Modell erforderlichen Parameter bereitzu­stellen und regelmaBig zu aktualisieren. Fiir einige Tatbestande, wie Nachfra­gemengen oder den Bestand an Arbeitskraften, ist dariiber hinaus ein feines Zeitraster nicht angemessen.

• Weiter ist zu beriicksichtigen, daB zahlreiche Daten mit einer gewissen Unsi­cherheit behaftet sind, so daB entweder Eventualplane fiir samtliche realisti­schen Umweltentwicklungen zu entwickeln sind oder bei jeder Anderung der Umweltdaten eine Aktualisierung der Planungsergebnisse erforderlich wird.

Das von KUPPER konzipierte Produktionsmodell hat aufgrund seiner klaren Struktur einen hohen Erklarungswert, ist jedoch fiir realistische GroBenordnun­gen nicht in der betrieblichen Praxis einsetzbar.

Page 243: Produktionstheorie ||

232 4. Dynamische Produktionsfunktionen

4.1.2 Die Produktionsfunktion von MA'ITllES

4.1.2.1 Ausgangspunkt

Eine weitere Formulierung ffir eine dynamische Produktionsfunktion wurde 1979 von MATIHES vorgeschlagen. Sein Ziel bestand darin, fiber die logische und zeitliche Abbildung von Input/Output-Beziehungen hinaus auch strukturelle, fi­nanzielle, prozeBtechnische und soziale Nebenbedingungen in das Produktions­modell einzubeziehen (vgl. BOTTA [1986], S. 117). Der Modellansatz baut auf dem von KUPPER vorgestellten Konzept auf und nimmt folgende Erweiterungen vor:

• Zum einen wird das in KUPPERs Produktionsmengenmodell verwendete, strikt auf die Zuordnung von Produktions- und Lagermengen zu Teilperioden orien­tierte Zeitraster aufgebrochen. An die Stelle aggregierter Mengen fiir eine Pe­riode setzt er datierte Mengen und Teilmengen, mit denen der tatsachliche Produktionsablauf wesentlich exakter abgebildet werden kann (vgl. MATIHES [1979], S. 55).

• Dies wird methodisch unterstUtzt durch einen netzplangestutzten Ansatz, bei dem jeder Vorgang als Projekt erfaBt und abgebildet wird. Ais Projekt wird insbesondere die Produktion einer Einheit eines bestimmten Endprodukts defi­niert, so daB sich in Abhiingigkeit von der Produktionsstruktur ein Netzwerk ergibt. Die Abbildung des Netzwerks erfolgt mit der vorgangsorientierten Me­tra-Potential-Methode.

• Durch die Netzplanstruktur wird die Einbeziehung des Finanzbereichs unter­stUtzt, da sich kurzfristige Ein- und Auszahlungen ebenfalls als terminierte Vorgiinge darstellen und in ihren Beziehungen zu den Produktionsvorgiingen abbilden lassen.

Zur detaillierten Abbildung des Vorgangs der Produktion innerhalb der einzelnen Teilperioden greift MATIHES auf das Konzept der Anpassungsformen von GUTENBERG sowie auf die Elementarkombinationen von HEINEN zuriick, die beide den fUr eine bestimmte Produktion erforderlichen Faktoreinsatz in Abhiin­gigkeit von der Ausstattung und der Fahrweise der Betriebsmittel modellieren.

4.1.2.2 Aufbau des Modells

Wie bereits bei der Produktionsfunktion vom Typ D beschrieben (vgl. Abschnitt 3.3), laBt sich auch die dynamische Produktionsfunktion von MATIHES auf un­terschiedlichem Aggregationsniveau darstellen: Sie kann sowohl die Prozesse

Page 244: Produktionstheorie ||

4.1 Kurl/ristige dynamische Produktionsfunktionen 233

und Aktivitiiten innerhalb des gesamten Unternehmens abbilden als auch beliebi­ge Ausschnitte bis hinunter zu der Ebene der Einzelprojekte.

Auf eine vollstiindige Spezifikation des sehr umfangreichen Modells wird an die­ser Stelle verzichtet, es werden lediglich die relevanten Strukturen angegeben und anhand einer Produktionsfunktion veranschaulicht. MATfHES beschreibt sein Produktionsmodell mit Hilfe der im folgenden genannten Parameter, Relationen und Restriktionen (vgl. MATIHES [1979], S. 21 - 68):

(1) Parameter stellen die Daten und Entscheidungsvariablen des Modells dar.

(a) Datenparameter • Produktionsmengen = Projektobjekte • Zwischenproduktmengen = Aktionsobjekte • Produktionskoeffizienten • Aktionsdauern der Anpassungskombinationen • Minimal- und Maximalfristen ffir Aktionstermine • Kapazitiitsbedarfe der Anpassungskombinationen an Personal, Be­

triebsmitteln, Teilen bzw. Aktionsobjekten und sonstigen Einsatzgti­tern

• Zahlungsbetriige von Projekten, Aktionen und Anpassungskombina­tionen

• Lagerbestiinde von End-, Zwischen- und Vorprodukten und sonstigen Stoffen

• Anfangsbestiinde der Potentialfaktoren Personal und Betriebsmittel • Beschaffungsmengen von Einsatzfaktoren und Betriebsmitteln

(b) Dispositionsparameter = biniire Entscheidungsvariable • Programmvariable • Anpassungsvariable • Terminvariable • Zahlungsterminvariable • Lager- und Kapazitiitsvariable

(2) Relationen zeigen durch die Verkntipfung von Daten und Variablen deren Interdependenzen auf.

(a) Aktionsdauerfunktionen

(b) Aktionsverbrauchsfunktionen • Teileverbrauch • sonstiger Stoffverbrauch

Page 245: Produktionstheorie ||

234 4. Dynamische Produktionsfunktionen

• Verbrauch von Arbeits- und Betriebsmittelleistungen

(c) Projektverbrauchsfunktionen

(d) Programmverbrauchsfunktionen

(e) Lagerverbrauchsfunktionen fUr verschiedenen Lagerstufen

(f) Projektzahlungsfunktionen

(g) Terminfunktionen • Projektanfangs- und -endtermine • Aktionsanfangs- und -endtermine • Projekt-, Aktions- und Anpassungszahlungstenninfunktionen

(h) Programmfunktionen

(i) dynamische Transfonnationsfunktionen

(3) Restriktionen beschreiben den zuHissigen Losungsbereich des Modells.

(a) Terminrestriktionen: Minimal- und Maximalfristen fiir die zeitlichen Be­ziehungen zwischen Produktions- und Zahlungsprozessen

(b) Anpassungs- und Riistrestriktionen

(c) KapaziUitsrestriktionen fUr Arbeit, Betriebsmittel, sonstige Stoffe und Projektteile

(d) Lagerrestriktionen fUr die isolierte und kombinierte Lagerung von Giitem

(e) globale und periodenbezogene LiquidiUitsrestriktionen

(f) Programmrestriktionen: globale und spezielle Mindest- und Hochstpro-duktionsmengen

Durch eine zielgerichtete Spezifikation dieser Parameter, Relationen und Re­striktionen entwickelt MATIHES seine "dynamische Einzelproduktionsfunktion" fiir den Verbrauch von Einsatzgut e in Periode t zur Erzeugung von Produkt (Projekt) i in Periode til (MATIHES [1979], S. 58 f.):

~ * * (t) ( ) R iet = £oJ Cijet + Ciet = fie 'it" jeJi

mit: R iet - Teilperiodenverbrauch von Einsatzgut e fiir die Erzeugung von Produkt i in Periode t

Cijet - Gesamtverbrauch von Einsatzgut e in Periode t fUr die Aktion ij (abgeleitet aus den entsprechenden Transfonnationsfunktionen)

Page 246: Produktionstheorie ||

4.1 Kurifristige dynamische Produktionsfunktionen

Ci: t - Gesamtverbrauch von Einsatzgut e in Peri ode t fUr Projekt i (abgeleitet aus den entsprechenden Transformationsfunktionen)

~t" - Ausbringungsmenge von Projekt i in Periode t"

235

Diese Funktion Hillt sich fUr verschiedene Arten von Einsatzgiitem, d.h. Vorpro­dukte, sonstige Einsatzgiiter und Arbeits- bzw. Betriebsmittelleistungen, aufstel­len. Die damit beschriebenen rein giiterwirtschaftlichen Beziehungen werden mit Hilfe der oben aufgefUhrten Relationen und Restriktionen in den finanzwirt­schaftlichen Bereich des Untemehmens eingebettet, so daB der Entscheidungstra­ger die Vorteilhaftigkeit eines einzelnen Projekts oder eines kompletten Produk­tionsprogramms unter Beriicksichtigung aller relevanten Interdependenzen beur­teilen kann.

4.1.2.3 Beurteilung der Produktionsfunktion von MA TTIIES

Der produktionstheoretische Ansatz von MATfHES zeigt auf, wie sich die in der Praxis relevanten Interdependenzen nicht nur innerhalb des Produktionsbereichs, sondem dariiber hinaus auch in ihren finanzwirtschaftlichen Auswirkungen be­riicksichtigen lassen. Dabei wird eine zeitpunktgenaue Erfassung siimtlicher Vor­gange mit Hilfe der Netzplantechnik vorgenommen. Die Betrachtung der Fi­nanzwirtschaft beschriinkt sich jedoch auf die Betrachtung der Liquiditatswir­kungen von Entscheidungen fiir verschiedene Produktionsebenen und Teilperi­oden.

Wie schon beim Ansatz von KOPPER, liegt die Bedeutung dieses Modells vor allem in seinem Erkliirungswert und weniger in der praktischen Anwendbarkeit. Die relevanten Beziehungen werden nachvollziehbar strukturiert und dargestellt; eine Spezifizierung samtlicher Funktionen und die Parametrisierung samtlicher Daten fiir eine reale Problemstellung erscheint jedoch ebenso undurchfiihrbar wie die rechnerische Bewaltigung des dabei entstehenden Netzplans.

Mit der Produktionsfunktion yom Typ Fist die in den vorhergehenden Abschnit­ten beschriebene Entwicklungsrichtung der Produktionstheorie, bei der die Mo­delle durch Einbeziehung zusatzlicher Entscheidungsbereiche immer realitatsna­her, aber auch immer komplexer wurden, zum Stillstand gekommen. Eine theore­tisch mogliche Erweiterung in Richtung eines Totalmodells des Untemehmens wurde zwar diskutiert, aber abgelehnt (vgl. BOTTA [1986], S. 119). Die For­schung hat sich in der Folgezeit anderen Problemstellungen zugewandt, iiber die im fUnften Kapitel ein Uberblick gegeben wird.

Page 247: Produktionstheorie ||

236 4. Dynamische Produktionsfunktionen

4.2 Langfristige dynamische Produktionsfunktionen Die zuvor behandelten dynamischen Produktionsfunktionen von KUpPER und MATI1ffiS beschriinken sich auf die Darstellung der zeitlichen Beziehungen von kurzfristigen Sachverhalten und Entscheidungen irn Produktionsbereich. Eine andere Entwicklungsrichtung stellt die langfristigen Aspekte des produktionswirt­schaftlichen Geschehens in den Vordergrund, insbesondere die Entwicklung der Produktionsbedingungen und der eingesetzten Produktionstechnologie in Abhan­gigkeit von irn Zeitablauf veranderten Rahrnenbedingungen.

Die dern Untemehmen zur Verffigung stehenden Produktionsrnoglichkeiten sind nun nicht rnehr als gegeben anzusehen, sondem explizit Gegenstand der Planung. Abschnitt 4.2.1 zeigt zunachst exernplarisch die Darstellung der Technologie­wahlentscheidung irn Putty-Clay-Modell, Abschnitt 4.2.2 geht anschlieBend sy­sternatisch auf die EinfluBgroBen und den Verlauf der langfristigen Entwicklung der Produktionsrnoglichkeiten eines Untemehrnens irn Zeitablauf ein. In Ab­schnitt 4.3 wird ein kurzer Uberblick fiber weitere Ansatze der dynamischen Pro­duktionstheorie gegeben.

4.2.1 Das Putty-Clay-Modell

Das Putty-Clay-Modell untersucht einen neuen Aspekt des SUbstitutionspro­blerns. Es unterscheidet zwischen einer Produktionsfunktion ex ante, die die Moglichkeiten der Ausgestaltung einer Produktionsanlage und der damit verbun­denen Faktorverbrauchsrnengen in Abhangigkeit vorn Stand des technischen Fortschritts irn Installationszeitpunkt abbildet, und einer Produktionsfunktion ex post, die die beschriinkten Substitutionsrnoglichkeiten nach der Installation, d.h. wahrend der Betriebsphase der Anlagen, beschreibt. (V gl. zurn folgenden KIST­

NER [1993a], S. 133 ff.)

Dies HiBt sich durch folgendes Bild veranschaulichen: Vor der Installation einer Anlage bestehen vielfaltige Ausgestaltungsrnoglichkeiten; ihre konkrete Ausle­gung und die daraus resultierenden Produktionsrnoglichkeiten sind verformbar wie weicher Kitt (putty). Nach der Installation konnen hingegen mit einer be­stimmten Anlage nur noch einer oder wenige Produktionsprozesse realisiert wer­den; ihre Form und damit auch ihre produktionswirtschaftlichen Eigenschaften sind festgelegt wie bei gebranntern Ton (clay).

1m Putty-Clay-Modell werden die vielfaItigen bei der Technologiewahl bestehen­den Substitutionsrnoglichkeiten zwischen den Produktionsfaktoren durch eine

Page 248: Produktionstheorie ||

4.2 Langfristige dynamische Produktionsfunktionen 237

neoklassische ex-ante Produktionsfunktion yom COBB-DOUGLAS-Typ abgebildet. Der technische Fortschritt wird durch eine Fortschrittsfunktion ao (-r) dargestellt, die die Abhangigkeit des Niveaufaktors yom Insta1lationszeitpunkt erfaBt.

x = ao(-r)· rl al •.... rn an

n mit: L ai ~ 1

i=l

1m Rahmen der bestehenden Substitutionsmoglichkeiten erfolgt die Technolo­giewahl so, daB alle Produktionsfaktoren in dem MaBe eingesetzt werden, das ihrer Minimalkostenkombination entspricht, d.h. daB die Grenzrate der Substitu­tion gleich dem im Installationszeitpunkt bestehenden umgekehrten VerhaItnis der Faktorpreise ist (vgl. Abschnitt 2.2.2.1).

!!L. rj =!!L aj 'i qj

i,j = 1, ... ,n

Dabei werden fUr die Werkstoffe und Arbeitskrafte die aktuellen Marktpreise, fUr die Betriebsmittel hingegen die aufgrund ihres Anschaffungspreises und der Nut­zungsdauer zu erwartenden Abschreibungsbetrage angesetzt. 1m Fall zweier Pro­duktionsfaktoren liiBt sich diese Bedingung eindeutig auflosen:

al ·q2 rl =--·r2

a2 ·ql

In der Regel wird jedoch keine kontinuierliche Substitution zwischen den Pro­duktionsfaktoren moglich sein, wie sie durch die COBB-DouGLAs-Funktion un­terstellt wird. Vielmehr werden einige ausgewiihlte Anlagentypen am Markt zur Verffigung stehen, die die geforderten Produktionsleistungen erbringen konnen. Diese weisen zwar unterschiedliche, doch jeweils diskrete Faktoreinsatzmengen­verhaItnisse auf, zwischen denen die Auswahl erfolgen kann. Mit der Entschei­dung fUr eine bestimmte Anlage wird dann ein fester ProduktionsprozeB oder auch eine genau eingegrenzte Menge von Prozessen installiert, die in der an­schlieBenden Nutzungsphase zur Verfiigung stehen.

Der Anlagenbestand des Untemehmens wird in der Regel nicht in einem Zeit­punkt angeschafft, sondem besteht aus Anlagen unterschiedlichen Alters, die je­weils dem bei ihrer Installation geltenden Stand des technischen Fortschritts ent­sprechen. Dadurch ergeben sich in der Nutzungsphase recht differenzierte Pro­duktionsmoglichkeiten.

Page 249: Produktionstheorie ||

238 4. Dynamische Produktionsfunktionen

Fiir die laufende Produktionsplanung gilt die ex-post Produktionsfunktion, die durch die vorherigen Investitionsentscheidungen eindeutig determiniert ist. Die mit den installierten Anlagen verbundenen Produktionsprozesse und deren Pro­zeBkombinationen entsprechen Aktivitaten, die in ihrer Gesamtheit die Techno­logiemenge des Untemehmens bilden. In jedem Zeitpunkt verftigt das Untemeh­men somit tiber eine bestimmte Zahl von mit den ausgewablten Anlagen verbun­denen Produktionsprozessen, wobei aufgrund der Moglichkeit zur intensitatsma­Bigen Anpassung mit einer Anlage durchaus mehrere Prozesse verbunden sein konnen. Die sich aus diesen Produktionsmoglichkeiten ergebende Technologie­menge laBt sich mit dem Instrumentarium der Aktivitatsanalyse untersuchen.

4.2.2 Entwicklung der Produktionsmiiglichkeiten im Zeitablauf

4.2.2.1 Ausgangspunkt

Eine Aufgabe der dynamischen Produktionstheorie ist es, die Entwicklung der langfristigen Produktionsbedingungen zu erfassen und ihren EinfluB auf die Ge­staltung der Produktionsmoglichkeiten aufzuzeigen. Die Technologiewahl ist eine strategische Entscheidung, die die zukiinftigen Produktionspotentiale des Unter­nehmens bestimmt. In einer so1chen langfristigen Betrachtung ist ein hoher Ag­gregationsgrad und damit eine weitgehende Abstraktion von einzelnen Produk­tionsprozessen erforderlich, so daB eine kontinuierliche Modellierung angemes­sen erscheint. (Vgl. zum folgenden STEVEN [1994a], S. 162 ff. sowie STEVEN [1994b], S. 493 ff.) Daher wird die dynamische Produktionsfunktion hier als neoklassische Funktion yom COBB-DOUGLAS- oder CES-Typ modelliert:

1

bzw. x~(t) = (clrh(t)ra\ + ... +cn~h(t)ra\) a2

x~ (t) beschreibt die Produktionsmoglichkeiten im Zeitpunkt t, die sich aufgrund der im Zeitpunkt 'l' < t installierten Technologie ergeben, 'i(t) die Einsatzmenge des Produktionsfaktors i im Zeitpunkt t, und ai~ bzw. ci~ sind die im Installati­onszeitpunkt 't geltenden Koeffizienten der Produktionsfaktoren.

Der Betriebsmittelbestand eines Untemehmens besteht in der Regel aus unter­schiedlichen Aggregaten, die zu verschiedenen Zeitpunkten angeschafft worden sind und damit jeweils die bei ihrer Anschaffung verftigbaren technischen Mog­lichkeiten und die zugehorigen gesamtwirtschaftlichen Knappheitsrelationen re-

Page 250: Produktionstheorie ||

4.2 Langfristige dynamische Produktionsfunktionen 239

flektieren. So ist zu beobachten, daB die relative Verteuerung eines Produktions­faktors im Zeitablauf zu des sen immer stiirkerer Substitution fiihrt. Beispiele da­fUr sind die zunehmende Rationalisierung und Automatisierung in den Unter­nehmen, urn den relativen Anstieg der Lohnkosten zu kompensieren, oder die Tendenz zur Anschaffung von energie- und rohstoffsparenden Anlagen, die der Verknappung und damit der tendenziellen Verteuerung von Umweltfaktoren Rechnung tragen.

Wesentliche EinfluBfaktoren, die langfristig zu einer Vedinderung der yom Un­temehmen eingesetzten Technologie fiihren, sind veriinderte Rahmenbedingun­gen der Produktion. Der Ausloser fUr die Entwicklung und Installation neuartiger Produktionsverfahren kann auf unterschiedlichen Ebenen angesiedelt sein und sowohl aus dem Untemehmen selbst als auch aus seiner Umgebung stammen:

(1) Gesetzliche Anforderungen

Sowohl im Bereich der Umweltschutzgesetzgebung als auch im Arbeits­schutz und bei der Sicherheitstechnik ist eine Tendenz zur immer weiter ge­henden Verscharfung festzustellen. Dies kann dazu ftihren, daB die bislang genutzten Produktionsverfahren nicht mehr zuUissig sind und damit eine In­stallation neuer Technologien auslosen.

(2) Technischer Fortschritt

Unter technischem Fortschritt werden in diesem Zusammenhang alle Tatsa­chen verstanden, durch die sich dem Untemehmen bislang nicht realisierte Produktionsmoglichkeiten eroffnen. So kann eine Technologiewahlentschei­dung durch die Verfiigbarkeit neuer, kostengiinstigerer Produktionsverfahren, durch Innovationen im Bereich der Produkte oder durch die bereits genannte Verteuerung einzelner Einsatzfaktoren ausgelost werden.

(3) Marktanreize

Durch veranderte Bediirfnisse der Verbraucher werden Nachfrageverschie­bungen ausgelost, auf die das Untemehmen in der Regel nur reagieren kann, wenn es die ffir die Fertigung der neuen Produkte erforderlichen Produk­tionsanlagen installiert. Auch die Investition der Konkurrenz in neuartige Technologien kann eine Technologiewahlentscheidung auslOsen, urn die re­lative Technologieposition des Untemehmens aufrechtzuerhalten.

(4) ErsatzbedarJ

Bei Ablauf der technischen Nutzungsdauer einer Anlage erfolgt in der Regel keine identische Ersatzinvestition, sondem eine dem aktuellen bzw. absehba­ren Stand der Technik entsprechende Ersatzbeschaffung.

Page 251: Produktionstheorie ||

240 4. Dynamische Produktionsfunktionen

Bei der Auswahl einer neuen Produktionsanlage sind nicht die jeweils geltenden Rahmenbedingungen zugrunde zu legen, sondem es soUte eine Antizipation von bereits absehbaren Entwicklungen erfolgen. Damit ist gewahrleistet, daB die neu installierte Technologie fUr einen liingeren Zeitraum den Erfordernissen ent­spricht.

Die Einftihrung einer neuen Technologie erfolgt in der Regel nicht in einem Schritt, sondem su/czessiv: Durch die Anschaffung einer neuen Anlage werden die mit dieser verbundenen Produktionsprozesse in die Technologiemenge des Untemehmens zusatzlich aufgenommen und finden zukiinftig bei der Produktion in dem MaBe Verwendung, wie ihr Einsatz lohnend erscheint. Dabei verdriingen sie die alteren Prozesse entweder tiber den Preismechanismus oder aufgrund von Effizienztiberlegungen. Selbst wenn ein neuer ProzeB alle bisher benutzten Ver­fahren dominiert, wird jedoch die Kapazitat der zugehorigen Anlage nicht fUr die Fertigung der gesamten Ausbringungsmenge ausreichen, so daB zunachst eine ProzeBkombination aus alten und neuen Produktionsprozessen eingesetzt wird.

Ais Ansatzpunkt ftir eine Dynamisierung der Produktionsfunktion eignet sich vor aUem der technische Fortschritt. Seine Umsetzung setzt einen entsprechenden Investitionsvorgang voraus, der nur bei positiven Erfolgsaussichten der neuen Anlage bzw. der auf dieser hergestellten Produkte erfolgt. Obwohl technischer Fortschritt in der Realitat eher in diskreten Schtiben auf tritt, wird er im folgenden kontinuierlich modelliert (vgl. KRELLE [1969], S. 117 ff.). Dies ist zulassig, da es sich zum einen urn eine aggregierte, langfristige Betrachtung handelt, zum ande­ren kann von einer relativ regelmaBigen Folge kleiner Fortschrittsschtibe ausge­gangen werden.

Die Modellierung des technischen Fortschritts in der Produktionsfunktion kann auf unterschiedliche Weise erfolgen:

• Die Produktionsfunktion wird multiplikativ mit einem Fortschrittsterm e.fJt verkntipft. Dabei gibt /3 > 0 die Wachstumsrate des technischen Fort­schritts an. Problematisch bei dieser Abbildung ist, daB ein kontinuierliches Wachstum des technischen Fortschritts unterstellt wird, woraus ein exponenti­elles Anwachsen der Produktionsmoglichkeiten im Zeitablauf resultiert. Auf­grund der begrenzten Verftigbarkeit von Ressourcen ist letzteres jedoch nicht realistisch.

• In einer F ortschrittsfunktion j3( -r) mit /3' ( -r) > 0 laBt sich der zeitliche Verlauf des technischen Fortschritts beliebig modellieren. Insbesondere sind auf diese

Page 252: Produktionstheorie ||

4.2 Langfristige dynamische Produktionsfunktionen 241

Weise logistische oder ertragsgesetzliche Funktionen darstellbar, die eher der Realitiit entsprechen.

Weiter ist danach zu unterscheiden, ob der technische Fortschritt fur die Ent­wicklung der gesamten Produktionsmoglichkeiten oder differenziert fUr die ein­zelnen Einsatzfaktoren modelliert wird. Letzteres ist nur bei einer CES­Produktionsfunktion moglich, da sich in der COBB-DOuGLAs-Funktion aufgrund der multiplikativen Verknupfung der Produktionsfaktoren der Fortschritt nicht eindeutig einem bestimmten Faktor zuordnen laBt. Die nach Einsatzfaktoren dif­ferenzierte Modellierung mittels Fortschrittsfunktionen stellt den realitatsniiheren Fall dar, in dem die andere Moglichkeit als Spezialfall enthalten ist. Die daraus resultierende Produktionsfunktion lautet:

1

X-r(t) = (Cl-r[PI ('l')' rl (t)ra) +"'+Cn-r [Pn ('l')' rn(t)ra)) a2

1m folgenden wird untersucht, wie die langfristige Technologiewahlentscheidung in Abhangigkeit yom technischen Fortschritt und anderen EinfluBgroBen getrof­fen wird.

4.2.2.2 Technologiewahl ohne technischen Fortschritt

Tritt kein technischer Fortschritt auf, so nehmen samtliche Fortschrittsfunktionen einen konstanten Wert von 1 an, so daB sie sich nicht auf den Verlauf der Pro­duktionsfunktion auswirken:

Pl('l') = ... = Pn('l') ==1

1

~ X-r (t) = (Cl-r . rl (t raJ +"'+Cn-r . rn (t r a)) a2

In diesem Fall erfolgt die Technologiewahlentscheidung ausschlieBlich aufgrund des geltenden bzw. erwarteten PreisverhaItnisses bei den Einsatzfaktoren. Die Technologie wird so festgelegt, daB fUr samtliche Einsatzfaktoren die aus der Produktionsplanung bekannte Optimalitiitsbedingung erfullt ist, daB die Grenz­rate der Substitution dem umgekehrten Verhaltnis der Faktorpreise entspricht (vgl. Abschnitt 2.2.2.1).

C j-r 'i t ..:.. q j ( ( )Ja) +1 ,

Ci-r . rAt) - q; fiir alle i, j = 1, ... ,n

Page 253: Produktionstheorie ||

242 4. Dynamische Produktionsfunktionen

Mit der dadurch erfolgten Festlegung der FaktoreinsatzmengenverhaJ.tnisse sind auch die Produktionskoeffizienten des neuen Produktionsprozesses bestimmt, d.h. der mit der zu insta1lierenden Anlage verbundene ProzeB ist eindeutig cha­rakterisiert. Die absolute Hohe des in der anschlieBenden Betriebsphase tatsach­lich erfolgenden Faktoreinsatzes hangt nicht nur von den Produktionskoeffizien­ten, sondem wesentlich von der Hohe der geplanten Ausbringungsmenge abo

:--------x ---~:-------x,

~--------~------~~----------+ r1

Abb. 82: Verschiebung der Minimalkostenkombination bei Preisanderung

In Abbildung 82 ist fiir den Fall zweier Produktionsfaktoren dargestellt, wie sich durch einen Anstieg des Preises von Faktor 1 die Wahl des kostenminimalen Pro­duktionsprozesses verandert: Der Anstieg der Isokostengerade wird steiler, und die Minimalkostenkombination verschiebt sich nach links. Damit verlauft auch der neue optimale ProzeB steiler als der vorherige, d.h. er benOtigt relativ weniger von dem teurer gewordenen Einsatzfaktor 1 und relativ mehr von Faktor 2. Da dieser Substitutionseffekt die PreiserhOhung nicht vollstandig kompensieren kann, geht gleichzeitig die bei einem gegebenen Kostenbudget maximal mogliche Ausbringungsmenge von x auf x' zurUck, d.h. die neue Isoquante verlauft unter­halb der alten.

Page 254: Produktionstheorie ||

4.2 Langfristige dynamische Produktionsjunktionen 243

4.2.2.3 Technologiewahl mit technischem Fortschritt bei allen Einsatzfaktoren

Durch technischen Fortschritt erhOht sich die ProduktivWit der Einsatzfaktoren, d.h. fur eine bestimmte Ausbringungsmenge sind geringere Faktoreinsatzmengen erforderlich, wenn der zugehOrige ProduktionsprozeB installiert wird. Tritt der technische Fortschritt gleichmliBig bei allen Produktionsfaktoren auf, so wird zur Herstellung einer bestimmten Ausbringungsmenge von allen Faktoren gleichma­Big weniger benotigt. GleichmliBiger technischer Fortschritt bei allen Produk­tionsfaktoren bedeutet, daB in der Produktionsfunktion aIle Fortschrittsterme bzw. -funktionen identisch sind.

aj _~

=> x-r (t) = {3('r) a2 (Cl-r . rl (t raj +"'+Cn-r . rn (t ra,) a2

Das bedeutet weiter, daB sich die aufgrund der gegebenen Preis situation optima­len Faktoreinsatzmengenverhaltnisse nicht andem, da sich der Fortschrittsterm aus der Bedingung fUr die Minimalkostenkombination herauskiirzt.

--__________ ~v~or~he~

nachher x

~--------~--~---------------.rj

Abb. 83: GleichmliBiger technischer Fortschritt

Abbildung 83 veranschaulicht diese Wirkung fiir den Fall zweier Einsatzfaktoren: Wenn aufgrund des technischen Fortschritts die Produktivitat beider Faktoren zunimmt, verringem sich deren Produktionskoeffizienten gleichmliBig. Die Pro­duktion mit dem neuen ProzeB erfolgt auf einem ProzeBstrahl, der die gleiche

Page 255: Produktionstheorie ||

244 4. Dynamische Produktionsfunktionen

Steigung wie der alte aufweist, jedoch in sich gestaucht ist. Daher ist eine be­stimmte Ausbringungsmenge x nunmehr mit einem geringeren Kostenniveau er­reichbar, d.h. die neue Isoquante verHiuft gleichmiiBig unterhalb der alten. Dies liiBt sich auch graphisch anhand der Minimalkostenkombination nachvollziehen.

4.2.2.4 Technologiewahl mit technischem Fortschritt bei einem Einsatzfaktor

Realistischer als der gleichmiiBige technische Fortschritt ist der Fall, daB sich die ProduktiviUit der verschiedenen Einsatzfaktoren in unterschiedlichem AusmaB andert. Vereinfachend wird angenommen, daB sich der technische Fortschritt aus­schlieBlich auf Faktor 1 auswirkt, so daB sich dessen Produktionskoeffizient ver­ringert. Das bedeutet, daB in der Produktionsfunktion die Fortschrittsfunktionen fur alle anderen Produktionsfaktoren konstant gleich 1 sind:

{32(7:) = ... = {3n(7:) =1

1

=> x~(t)=(CI~[{3I(7:).rI(t)ral+ ... +Cn~.rn(tral) a2

Wahrend die Einsatzmengenverhaltnisse zwischen den yom Fortschritt unbe­riihrten Produktionsfaktoren konstant bleiben, wirkt sich der technische Fort­schritt bei Faktor 1 auf die ibn betreffenden Bedingungen fur die Minimalkosten­kombination folgendermaBen aus:

i=2, ... ,n

Bei konstanten Preisverhiiltnissen liiBt sich ein Ansteigen des Fortschrittsfaktors {3I (7:) auf der linken Seite der Bedingung nur dadurch kompensieren, daB auch das Einsatzmengenverhaltnis 'i / ri steigt, d.h. daB yom nunmehr ergiebigeren Faktor 1 relativ weniger und von den anderen Faktoren relativ mehr eingesetzt werden muB. Der technische Fortschritt fuhrt also zu einer Einsparung des Fak­tors 1.

In Abbildung 84 ist dieser Effekt graphisch veranschaulicht: Wenn sich die Pro­duktivitat des Einsatzfaktors 1 aufgrund des technischen Fortschritts erhoht und die der anderen Faktoren unverandert bleibt, verandert sich die Isoquante derart, daB zur Erzeugung derselben Ausbringungsmenge x und bei gleichen Einsatz­mengen der anderen Produktionsfaktoren immer weniger von Faktor 1 benotigt wird. Die neue Isoquante und die zugehorige Isokostengerade verschieben sich

Page 256: Produktionstheorie ||

4.2 Langfristige dynamische Produktionsfunktionen 245

aufgrund der gestiegenen Ergiebigkeit von Faktor 1 nach links, so daB die Aus­bringungsmenge x mit den geringeren Gesamtkosten K' erzeugt werden kann. Der durch die Minimalkostenkombination definierte neue optimale Produktions­prozeB verHiuft steiler als der urspriingliche ProzeB, d.h. er setzt fUr eine be­stimmte Ausbringungsmenge relativ und absolut weniger von Faktor 1 ein .

.::::::::======= ~

Abb. 84: UngleichmaBiger technischer Fortschritt

Ob es bei den anderen Produktionsfaktoren, deren Einsatzmengen relativ anstei­gen, absolut ebenfalls zu einem Anstieg oder einem Riickgang kommt, hangt von demjeweiligen Verlauf der Isoquante und der Isokostengerade abo

Analoge Uberlegungen gelten fUr den Fall, daB bei mehreren Produktionsfaktoren technischer Fortschritt mit gleichem oder auch unterschiedlichem Anstieg der Fortschrittsfunktionen auftritt.

4.2.2.5 Technologiewahl bei Faktoreinsatzmengenbeschrankungen

Eine Technologiewahlentscheidung kann auch dadurch ausgelost werden, daB das Entscheidungsfeld des Untemehmens derart eingeschrankt wird, daB aufgrund von Knappheiten bei einzelnen Einsatzfaktoren, die z.B. in Form von langfristi­gen Beschaffungsproblemen, Kontingenten, gesetzlichen Auflagen, Grenzwerten oder anderen Umweltschutzvorschriften auftreten konnen, der bislang genutzte ProduktionsprozeB fUr die gewiinschte Produktionsmenge nicht mehr zuHissig ist. Darauf kann das Untemehmen entweder durch eine entsprechende Reduktion seiner Ausbringungsmenge oder durch Installation eines neuen Prozesses, der den beschrankten Faktor weniger stark in Anspruch nimmt, reagieren.

Page 257: Produktionstheorie ||

246 4. Dynamische Produktionsjunktionen

In Abbildung 85 ist dargestellt, wie sich eine Einsatzmengenbeschrlinkung fUr den Faktor 1 auf die ProzeBwahl auswirkt:

I Obergrenze

----~~~-----------x ~~----~------------~~------~rl

Abb. 85: Technologiewahl bei Restriktionen

Der zuvor zur Herstellung der Ausbringungsmenge x genutzte ProzeB 1, der die aufgrund der aktuellen Preis situation geltende Minimalkostenkombination wider­spiegelt, ist nicht mehr zuHissig. Das Untemehmen muB daher zumindest die ge­rade noch zulassige Randlosung realisieren und auf den - kostenungfinstigeren -ProzeB 2 ausweichen, der die Herstellung von x mit der beschrlinkten Faktorein­satzmenge erlaubt. Bei Auswahl dieses Prozesses besteht allerdings kein Spiel­raum mehr fiir eine spatere Erhahung der Ausbringungsmenge oder fiir den Fall, daB sich die Restriktion weiter verschlirft. Daher kann es sinnvoll sein, den Pro­zeB 3 auszuwlihlen, der zwar kurzfristig noch hahere Kosten als ProzeB 2 verur­sacht, aber langfristig dem Untemehmen umfassendere Handlungsoptionen er­offnet.

4.2.2.6 Entwicklung der Technologiemenge im Zeitablauf

Die bislang isoliert betrachteten EinfluBgroBen auf eine Technologiewahlent­scheidung treten in der RealiHit gemeinsam auf, so daB sich die jeweils diskutier­ten Einfltisse tiberlagem. Die Technologiewahlentscheidung soUte in bezug auf Preisverhliltnisse und Restriktionen die wlihrend der spateren Nutzung der Anlage zu erwartenden Werte hinreichend stark antizipieren, urn nicht nur im Entschei­dungszeitpunkt, sondem auch nachfolgend zu vertretbaren Kosten zu produzie-

Page 258: Produktionstheorie ||

4.2 Langfristige dynamische Produktionsfunktionen 247

ren. Hinsichtlich des technischen Fortschritts stellt sich die Frage, zu welchem Zeitpunkt die Investition erfolgen sollte: Durch ein Hinausschieben Hillt sich zwar ein hoheres Fortschrittsniveau realisieren, daffir wird aber auf die Nutzung der noch nicht installierten Anlage wahrend der Wartezeit verzichtet.

Die im Laufe der Zeit durch die verschiedenen Technologiewahlentscheidungen ausgelOste sukzessive Einfiihrung von Produktionsanlagen bzw. der diesen zuge­ordneten Produktionsprozesse mit unterschiedlichen Produktionskoeffizienten bewirkt, daB sich die Technologiemenge des Untemehmens, die seine produkti­yen Moglichkeiten in einem bestimmten Zeitpunkt beschreibt, im Zeitablauf ver­andert. Mit jeder Einftihrung eines neuen Prozesses wird die Technologiemenge erweitert; dadurch ergeben sich neue Moglichkeiten zur Erzeugung einer be­stimmten Ausbringungsmenge x durch ProzeBkombinationen. Ein Beispiel ffir die Entwicklung einer Technologiemenge in aufeinanderfolgenden Investitionszeit­punkten ist ffir den FaU zweier Einsatzfaktoren in Abbildung 86 dargesteUt.

(1) Aufgrund der ersten Investitionsentscheidung wird zunachst der Produkti­onsprozeB 1 mit einem bestimmten Einsatzmengenverhaltnis rl I r2 realisiert, mit dem das Untemehmen beliebige Ausbringungsmengen, z.B. x, erzeugen kann.

(2) Wird bei der nachsten Investitionsentscheidung aufgrund technischen Fort­schritts oder veranderter Rahmenbedingungen eine Anlage installiert, mit der ein anderer ProduktionsprozeB 2 verbunden ist, so kann das Untemehmen neben den beiden reinen Produktionsprozessen auch deren ProzeBkombina­tionen zur HersteUung der Ausbringung x benutzen. Die zugehorigen ge­mischten Produktionsprozesse konnen die Ausbringung x mit jeder Einsatz­mengenkombination erzeugen, die auf der Verbindungslinie zwischen den beiden reinen Aktivitaten liegt.

(3) Durch die Installation jeder weiteren Anlage mit einem effizienten Produk­tionsprozeB, z.B. im nachsten Schritt ProzeB 3, ergeben sich zusatzliche Moglichkeiten der ProzeBkombination.

(4) Dabei kann der Fall auftreten, daB durch das Hinzutreten eines neuen, effizi­enten Prozesses 4 ein alter ProzeB, hier der ProzeB 1, gegentiber ProzeBkom­binationen aus einem anderen alten und dem neuen ProzeB ineffizient wird. Dieser ProzeB wird fortan allenfaUs dann genutzt, wenn es aus Kapazitats­grtinden erforderlich werden soUte. Ansonsten ist er durch das Auftreten von ProzeB 4 technisch obsolet geworden, auch wenn die Anlage noch nicht ihre wirtschaftliche Nutzungsdauer erreicht hat.

Page 259: Produktionstheorie ||

248 4. Dynamische Produktionsfunktionen

ProzeB 2 ProzeB 3 ProzeB 2 ProzeB 3

Abb. 86: Entwicklung der Technologie im Zeitablauf

Die Technologiemenge des Untemehmens ergibt sich einerseits, wie zuvor darge­stellt, aus den Ergebnissen der einzelnen Technologiewahlentscheidungen, ande­rerseits aus der Einwirkung einer Reihe weiterer dynamischer Einfliisse:

• Die aufgrund einer Investitionsentscheidung installierten Anlagen und die da­mit verbundenen Produktionsprozesse stehen dem Untemehmen zeitlich nicht unbegrenzt zur Verfiigung, sondem die Anlagen scheiden nach Ablauf ihrer Nutzungsdauer wieder aus der Produktion aus .

• Weiter kann es erforderlich werden, auf den Einsatz von Anlagen zu verzich­ten, wenn diese die aktuellen Auflagen nicht mehr erfiillen und auch nicht an sie angepaBt werden kannen.

Page 260: Produktionstheorie ||

4.3 Weitere Ansiitze der dynamischen Produktionstheorie 249

• Fortschritte bzw. Verschiebungen finden nicht nur auf dem Investitionsguter­markt statt, sondem auch bei den Produkten. Durch das Auftreten neuartiger Produkte und die Verlagerung der Nachfrage auf diese konnen Produktions­anlagen bereits vor Ablauf ihrer technischen Nutzungsdauer obsolet werden, so daB eine Investition in andere Anlagen erforderlich wird, die die neuen Pro­dukte erzeugen konnen. Diesem EinfluB laBt sich teilweise entgegenwirken, indem das Untemehmen flexible Mehrzweckmaschinen installiert, die in ge­wissen Grenzen auch fur andere als die urspriinglich vorgesehenen Zwecke eingesetzt werden konnen.

4.3 Weitere Ansatze der dynamischen Produktionstheorie Die in den letzten 20 Jahren entwickelten Ansatze zur dynamischen Produktions­theorie sind nicht nur recht komplex, sondem auch auBerst vielfaItig, so daB an dieser Stelle lediglich ein Uberblick uber die wesentlichen Entwicklungslinien und ihre Ergebnisse gegeben werden kann (vgl. auch FANDEL [1996]) .

• Der EinfluB von unterschiedlichen Formen des technischen Fortschritts auf die eingesetzte Produktionstechnologie und damit auf die Produktionsfunktion, der in der vorangegangenen Abschnitten implizit diskutiert wurde, laBt sich explizit als dynamische EinfluBgroBe modellieren (vgl. KRELLE [1969], S. 117 ff). Dabei werden der arbeitsgebundene, der kapitalgebundene und der werk­stoffgebundene technische Fortschritt in autonomer und induzierter Form un­terschieden und jeweils adaquat modelliert.

• Eine groBere Ergiebigkeit des Faktoreinsatzes im Zeitablauf kann auch - zu­mindest in der Anlaufphase der Produktion - auf Lemeffekte zuriickzufiihren sein. Das Lemgesetz der Produktion, das erstmals in den 30er Jahren ffir die amerikanische Flugzeugindustrie formuliert wurde, besagt, daB mit jeder Ver­doppelung der kumulierten Ausbringungsmenge die variablen Stiickkosten urn einen konstanten Prozentsatz, der als Lernrate bezeichnet wird, zuriickgehen (vgl. WRIGHT [1936]). Ursachen dieses Lemeffekts sind z.B. Ubung, Rationa­lisierung von Ablaufen, Senkung von Verschnitt.

• 1m dynamischen Modell von STOPPLER [1975] wird ein systemtheoretischer Ansatz gewahlt, urn die Veranderung von Technologien im Zeitablauf und de­ren Auswirkung auf die Produktionsmoglichkeiten des Untemehmens zu un­tersuchen und weiter die produktionswirtschaftlichen Tatbestande in Verbin­dung mit dem ubergeordneten System des Gesamtuntemehmens darzustellen.

Page 261: Produktionstheorie ||

250 4. Dynamische Produktionsfunktionen

• Eine kontrolltheoretische Modellierung der Gestaltung von optimaler Nut­zungsdauer, Instandhaltungs- und Produktionsrate wird von ROSKI [1986] vor­genommen, vgl. hierzu auch BENSOUSSAN et al. [1974].

• Uber die Verbindung von Produktions- und Investitionstheorie (vgl. ALBACH [1962b]) lassen sich die Kosten des Betriebsmitteleinsatzes produktionstheo­retisch fundieren. Da es sich bei den Betriebsmitteln urn Potentialfaktoren handelt, deren Nutzungspotential im Zeitablauf durch die Abgabe von Ver­richtungen verringert wird, ist es eine Aufgabe der dynamischen Produktion­stheorie, Anhaltspunkte ffir die Ermittlung von Abschreibungen zu entwickeln, tiber die eine zeit- und verursachungsgerechte Verteilung der Anschaffungsko­sten von Betriebsmitteln erfolgen kann (vgl. LUHMER [1975]). Aufbauend auf der Abschreibungstheorie lassen sich Strategien zur optimalen Planung von Wartungs- und InstandhaltungsmaBnahmen entwickeln (vgl. KISTNER / LUHMER [1988]). Weiter lassen sich daraus Erkenntnisse ffir die Ableitung des Ersatzzeitpunkts von Betriebsmitteln in Abhangigkeit von der Nutzung bzw. den daftir verrechneten Abschreibungen ermitteln (vgl. LUHMER [1980]).

• Ein Ansatz ftir eine Dynamisierung der Aktivitiitsanalyse wird von MAy [1992] vorgeschlagen. Dabei wirdjede Aktivitiit durch eine Matrix dargestellt, deren Zeilen wie tiblich den Gtiterarten entsprechen, und deren Spalten die Pe­rioden angeben, in denen das jeweilige Gut eingesetzt bzw. erzeugt wird. Z.B. gibt die dynamische Aktivitat

Ad = [~ ~ ~ J o 0 10

an, daB durch den Einsatz von 2 Einheiten von Produktionsfaktor 1 in der er­sten, je einer Einheit in der zweiten und dritten Periode und von je einer Ein­heit von Faktor 2 in der ersten, zweiten und dritten Periode 10 Outputeinheiten in der dritten Periode erzeugt werden (vgl. MAY [1992], S. 31). Sie entspricht damit der folgenden statischen Aktivitiit:

MAY tibertragt die Begriffe der Technologiemenge und der Effizienz auf das dynamische Modell, das er nicht nur kontinuierlich, sondem auch diskontinu­ierlich formuliert, und entwickelt ein darauf aufbauendes dynamisches In­put/Output-Modell (vgl. MAY [1992], S. 87 ff.).

Page 262: Produktionstheorie ||

251

5. Neuere Entwicklungen der Produktionstheorie Nach der kontinuierlichen Entwicklung der zuvor dargestellten, aufeinander auf­bauenden betriebswirtschaftlichen Produktionsfunktionen in den fUnfziger bis siebziger Jahren wurden in den folgenden Jahren zwar inhaltliche Erweiterungen und praktische Anwendungen der diesen zugrunde liegenden Konzepte vorge­nommen, es gab jedoch keine wesentlichen neuen Impulse zu einer Weiterent­wicklung der Produktionstheorie. Dies fulderte sich erst Anfang der neunziger Jahre, als sowohl konzeptionelle Erweiterungen von zuvor bereits diskutierten Problemstellungen vorgenommen als auch neuartige Ansatze zur Darstellung produktionstheoretischer Sachverhalte entwickelt wurden. Auf die wichtigsten dieser neueren Entwicklungen der Produktionstheorie wird in den folgenden Ab­schnitten eingegangen:

• In Abschnitt 5.1 wird auf die von ZELEWSKI [1993a] in seiner Habilitations­schrift ausfUhrlich dargestellte strukturalistische Produktionstheorie eingegan­gen, bei der bekannte Ansatze, wie die Aktivitatsanalyse sowie die Gu­TENBERG-Produktionsfunktion, in einen neuartigen Formalismus Ubersetzt werden, urn ihre Strukturen und Beziehungen deutlicher herauszuarbeiten.

• Abschnitt 5.2 gibt einen Einblick in die Moglichkeiten zur Bewaltigung von unsicheren Informationen in der Produktionstheorie, zu der die Theorie un­schaifer Produktionsfunktionen einen wesentlichen Beitrag geleistet hat.

• In Abschnitt 5.3 werden Ansatze zu einer umfassenden theoretischen Fundie­rung der Produktion von Dienstleistungen dargestellt. Dieser Teilbereich der Produktionstheorie wurde lange Zeit vemachlassigt und erst in den letzten Jah­ren verstarkt in der Literatur aufgegriffen.

5.1 Die strukturalistische Produktionstheorie Der von ZELEWSKI vorgeschlagene Formulierungsansatz der strukturalistischen Produktionstheorie baut auf dem wissenschaftstheoretischen Ansatz des non­statement-view auf. Das Konzept des Strukturalismus geht auf eine Veroffentli­chung von SNEED aus dem Jahre 1971 zuruck. Mit der Bezeichnung "non­statement-view" wird es von herkommlichen Vorstellungen abgegrenzt, die Theo­rien als Ansammlungen von Aussagen ansehen, we1che auf ihren Wahrheitsgehalt untersucht werden. 1m folgenden wird der Schwerpunkt auf den Aufbau und die Bedeutung dieses Ansatzes gelegt; die bei ZELEWSKI ebenfalls eine groBe Rolle

Page 263: Produktionstheorie ||

252 5. Neuere Entwicklungen der Produktionstheorie

spielenden wissenschaftstheoretischen Ausfiihrungen werden lediglich am Rande behandelt (vgl. dazu ZELEWSKI [1993a] sowie STEVEN / BEHRENS [1998]).

5.1.1 Die Formalspracbe der strukturalistiscben Produktionstheorie

Zur Formulierung produktionswirtschaftlicher Modelle verwendet ZELEWSKI eine Notation, die allein Symbole der formalen Logik sowie Pradikatsvariable zuliiBt. Diese Formalsprache, die urspriinglich von SNEED eingefilhrt wurde, ist das auf den ersten Blick sichtbare Anzeichen fiir Unterschiede zwischen dem non­statement-view und herkommlichen Theoriedarstellungen. Theorien bestehen nicht aus natiirlichsprachlich formulierten Aussagen (statements), sondem aus Formeln (non-statements), die in logisch-mathematischer Darstellung zuvor defi­nierte Begriffe miteinander verbinden. Dennoch kann dabei nicht vollstandig auf Aussagen verzichtet werden.

ZELEWSKI nimmt eine strukturalistische Reformulierung sowohl fiir die Aktivi­tatsanalyse (vgl. ZELEWSKI [1993a], S. 231 ff.) als auch fiir die GUTENBERG­Produktionsfunktion (vgl. ZELEWSKI [1993a], S. 245 ff.) vor. An dieser Stelle wird lediglich auf seine Darstellung von aktivitatsanalytischen Aussagen einge­gangen. Dabei ist zu beachten, daB er durch die in Anlehnung an DYCKHOFF [1994] erfolgende Klassifikation der an der Produktion beteiligten Gilter nach ihrer Erwilnschtheit in erwilnschte Gilter (goods), unerwiinschte Gilter (bads) und Neutra eine urn Umweltgiiter erweiterte Technologiemenge voraussetzt.

In den nachfolgenden Ausfiihrungen werden die folgenden logischen Operatoren verwendet (vgl. ZELEWSKI [1992], S. 92):

/\ Konjugat, entspricht dem natiirlichsprachlichen "und"

v Adjugat, entspricht dem natiirlichsprachlichen "oder"

y Disjugat, entspricht dem natiirlichsprachlichen "entweder ... oder"

--, Negat, entspricht dem natiirlichsprachlichen "nicht"

~ Subjugat, entspricht der Formulierung "wenn ... dann"

H Bijugat, entspricht der Formulierung "genau dann ... wenn"

3 Existenzquantor, entspricht der Formulierung "es gibt ein ... , fUr das gilt"

V Allquantor, entspricht der Formulierung "fUr alle ... gilt"

Zur strukturalistischen Formulierung von aktivitatsanalytischen Aussagen werden weiter die folgenden Symbole benotigt:

Page 264: Produktionstheorie ||

5.1 Die strukturalistische Produktionstheorie 253

(Xt,,,,,XK) - ProduktionsverhaItnis (Aktivitat) mit den Mengen xk der Guter k=1, ... ,K

gtu

PRAFp

- Funktion, die den Gutermengen Xt"",xK den geordneten Guter­tupel (Xt, ... , x K) zuordnet

- Funktion, die die Praferenz des Produzenten P ffir das erste von zwei miteinander verglichenen ProduktionsverhaItnissen aus­drtickt

TECH - technisch mogliches ProduktionsverhaItnis

PROD - realisiertes ProduktionsverhaItnis

RANDTE - Rand der Menge TE aller technisch moglichen Produktionsver­haltnisse

RATp - rationales Handeln des Produzenten P

WSB p - Praferenzurteil des Produzenten P, das eine Gutermenge als uner-wunscht (bad) qualifiziert

WSGp - Praferenzurteil des Produzenten P, das eine Gutermenge als er-wunscht (good) qualifiziert

WSN p - Praferenzurteil des Produzenten P, das eine Gutermenge als neu-tral qualifiziert

Die Vorgehensweise bei der strukturalistischen Reformulierung der Aktivitats­analyse wird anhand des wesentlichen Teils von ZELEWSKIS Formulierungsvor­schlag veranschaulicht. Die folgenden Formeln umfassen die in Abschnitt 2.3.1 eingefuhrten aktivitatsanalytischen Grundaussagen in Form von Axiomen und zusatzlich Definitionen fur Rationalitat, Praferenz und Effizienz (vgl. ZELEWSKI

[1993a], S. 231 f.):

(1) Produktionsstillstand ist technisch moglich, d.h. die Nullaktivitat gehort zur Technologiemenge:

TECH(Ot,···,O K )

(2) Verschwendung ist technisch moglich, d.h. auch ineffiziente Aktivitaten, bei denen erwunschte Guter verschwendet oder vernichtet bzw. unerwtinschte Guter weniger eingesetzt oder zusatzlich erzeugt werden, gehoren zur Tech­nologiemenge:

"tXt"·"txK:TECH(xt,,,,,xK) ~

("tYt,,·"tYK:("t(k E {1,,,.,K}):«WSGp(Xk) A WSGp(Yk)) ~ Yk ~ xk)

A «WSBp(Xk) A WSBp(Yk)) ~ Yk ~ xk)) ~ TECH(Yt"",YK))

Page 265: Produktionstheorie ||

254 5. Neuere Entwicklungen der Produktionstheorie

(3) Existenz mindestens eines nichttrivialen technisch moglichen Produktions­verhaItnisses, d.h. es gibt eine Aktivitiit, bei der mindestens ein erwiinschtes Gut erzeugt oder mindestens ein unerwiinschtes Gut eingesetzt wird:

3x1 .•• 3xK:TECH(XI,,,,,XK) A (3(k E {l, ... ,K}):

(WSGp(Xk) A Xk > 0) v (WSBp(Xk) A Xk < 0))

(4) AusschluB von reversiblen ProduktionsverhaItnissen, d.h. die Umkehrung einer technisch moglichen AktiviUit gehOrt nicht zur Technologiemenge:

VXI",VxK:(TECH(xI,,,,,xK) A(Xt,,,,,xK)"* (Ot,· .. ,OK)) ~

(-,TECH(-xt"",-xK ))

(5) AusschluB des Schlaraffenlandes, d.h. ohne Faktoreinsatz ist keine positive Ausbringung moglich:

VXI",VxK:«xI,,,,,xK)"* (OI'''''OK) A (V(k E (l, ... ,K}):

(WSGp(xk) ~ xk >0) A (WSBp(Xk) ~ xk < 0)))

~ (-,TECH(xI'''''x K))

(6) Abgeschlossenheit der Technologiemenge als Menge technisch moglicher ProduktionsverhaItnisse, d.h. die Aktivitiiten auf dem Rand der Technolo­giemenge sind ebenfalls technisch moglich:

VXI",VxK:(Xt,,,,,xK) E RANDTE ~ TECH(xI,,,,,xK)

(7) Nomische Rationalitiitshypothese, d.h. die von den Produzenten realisierten ProduktionsverhaItnisse entsprechen rationalem Handeln:

VXI'"'' VXK:PROD(xt,·",xK) ~ RATp(xt> .. "xK)

(8) Nomische Priiferenzhypothese, d.h. der Produzent kann sowohl jedes Giiter­topel als erwiinscht, unerwiinscht oder neutral klassifizieren als auch eine eindeutige Entscheidung hinsichtlich seiner Priiferenz bzw. Indifferenz beim Vergleich zweier Giitertupel angeben:

Vzt .. ·VzK:PROD(zt,,,,,ZK) ~

(V(k E {l, ... ,K}):WSGp(Zk) v WSBp(Zk ) vWSN P(Zk))

A (VYI",VYKVXt,,,VXK: PRAFp(gtu(Yt'''',YK ),gtU(Xt""'XK)) H

«V(k E {l, ... ,K}):«WSGp(Xk) A WSGp(Yk)) ~ Yk ~ Xk)

A «WSBp(Xk ) A WSBp(Yk)) ~ Yk :$; Xk))

A (3(k E {l, ... ,K}):«WSGp(Xk) A WSGp(Yk)) ~ Yk > Xk)

Page 266: Produktionstheorie ||

5.1 Die strukturalistische Produktionstheorie 255

V((WSBp(Xk)AWSBp(Yk))~ Yk <xk))

A(3(k E {l, ... ,K}):...,(WSN P(xk)A WSN P(Yk)))))

(9) Nomische Effizienzhypotbese, d.h. der Produzent realisiert keine Giiterbiin­del, deren Einsatz- und Ausbringungsmengen gemaB seinen Praferenzen von anderen Giiterbiindeln dominiert werden:

'VxI···'VxK:RATp(xI,···,xK) ~

(TECHp(xI'···,XK)

A ( ....,(3YI ... 3y K: TECH p (YI , ... , Y K )

A pRAFp(gtU(YI' ... ,y K ),gtu(xI , .. . ,xK )))))

Erganzt man diese neun Formeln urn die zusatzlich erforderlichen Definitionen, Randbedingungen und Interpretationen (vgl. nochmals ZELEWSKI [1993a], S. 231 - 238), so laBt sich damit das gesamte aktivitatsanalytische Grundmodell formal­sprachlich darstellen.

5.1.2 Beurteilung der strukturalistischen Produktionstheorie

Die Einfiihrung einer solchen formalen Sprache zur Abbildung einer wissen­schaftlichen Theorie erlaubt eine sehr prazise Darstellung. Innerhalb der Formal­sprache sind MiBverstandnisse ausgeschlossen; jeder Benutzer, der diese Sprache gelemt hat, wird die nach ihren Regeln gebildeten Formeln auf die gleiche Weise einsetzen. MiBverstandnisse anderer Art sind jedoch auch und gerade durch die Verwendung einer Formalsprache nicht ausgeschlossen.

Sie entstehen insbesondere bei der Riickiibersetzung der formalsprachlichen For­mulierungen in natiirlichsprachliche Aussagen, wenn zwei Benutzer die Defini­tionen der Bezeichner nicht identisch verstehen. Beispielsweise laBt sich die Ra­tionalitat des Handelns des Produzenten P, die in dem Bezeichner RATp ausge­driickt wird, auf verschiedene Weise iibersetzen: Eine mogliche Interpretation besteht darin, daB Rationalitat dann vorliegt, wenn die Handlungen des Produ­zenten auf konsistenten Praferenzen beruhen. Rationales Handeln kann aber auch in dem Sinne verstanden werden, daB sich der Produzent an "harten" Zielen wie Rentabilitat ausrichtet und "weiche" Ziele wie Umweltschutz oder Qualitat zu­riickstellt.

Ein wei teres Problem besteht darin, daB nicht jede natiirlichsprachliche Formulie­rung auch in der logisch-mathematischen Formalsprache eindeutig wiedergege­ben werden kann. So hat z.B. der natiirlichsprachliche Ausdruck "wenn ... dann"

Page 267: Produktionstheorie ||

256 5. Neuere Entwicklungen der Produktionstheorie

mehr Bedeutungen als lediglich die logische Konsekution. In der natiirlich­sprachlichen Definition Hillt sich damit auch eine zeitliche Reihung zum Aus­druck bringen, die jedoch erst dann zum Tragen kommt, wenn die konsekutive Relation nicht erfiillt ist. So1che temporal verstandene Reihungen konnen mit logischen Symbolen hingegen nicht ausgedriickt werden.

Gegen eine Formalsprache als Fachsprache lassen sich weitere schwerwiegende Einwiinde vorbringen. Die Bedeutung einer eindeutigen Fachsprache fUr das Be­treiben einer Wissenschaft ist unstrittig. Nur mit exakt definierten Begriffen ist ein wissenschaftlicher Austausch moglich. Es ist jedoch allgemein uhlich, sich bei der Herausbildung einer Fachsprache der natiirlichen Sprache und insbeson­dere des darin ausgedriickten Vorverstandnisses der Begriffe (z.B. Preis) zu be­dienen. Gerade die Wirtschaftswissenschaften leben von der umgangssprachli­chen Semantik ihrer Begriffe.

SchlieBlich ist gegen eine logisch-mathematische Formelsprache als wissen­schaftliche Fachsprache einzuwenden, daB sie sehr anfiillig gegen Druck- und Lesefehler ist, denn bereits eine verges sene oder ubersehene Klammer kann den Sinn einer Formel verandern. Der Formelsprache fehlt die Redundanz der natiirli­chen Sprache, die es dem Leser z.B. ermoglicht, Druckfehler als so1che zu erken­nen.

Somit ist auf den ersten Blick nicht zu erkennen, we1che Vorteile die strukturali­stische Theorieformulierung gegenuber der herkommlichen Darstellungsweise der Aktivitiitsanalyse, wie sie auch in Abschnitt 2.3 verwendet wird, bietet. Thr Wert liegt nicht in einem stiirkeren Anwendungsbezug oder einem didaktisch besser nachvollziehbaren Aufbau, sondern auf der Ebene der wissenschaftstheo­retischen Auseinandersetzung mit Modellen und Theorien.

Die strukturalistische Formulierung erlaubt eine priizise axiomatische Fundierung sowie einen besseren Einblick in die Struktur einer Theorie. Es wird zwischen dem vollstandig definierten Kern einer Theorie und den intendierten Anwendun­gen unterschieden. Jede Kombination von eingefiihrten Begriffen mit Hilfe der logisch-mathematischen Verknupfungen stellt ein potentielles Modell der Theorie dar. Eine Einschranlrung auf sinnvolle Modelle erfolgt durch die Einfuhrung von wesentlichen gesetzesartigen Aussagen, wie sie die Effizienzbedingung fur die Aktivitiitsanalyse darstellt. Die aktivitiitsanalytischen Axiome nehmen bei ZELEWSKI nicht den Rang von Gesetzen ein, sondern schriinken den Bereich der intendierten Anwendungen als Randbedingungen ein. Durch die Einfiihrung einer zusiitzlichen gesetzesartigen Aussage, nach der die Menge aller effizienten Tech-

Page 268: Produktionstheorie ||

5.1 Die strukturalistische Produktionstheorie 257

nologien eine Geradengleichung erfiiUt, laBt sich das aktivitiitsanalytische GrundmodeU zur linearen Aktivitiitsanalyse spezialisieren.

Wie dieses Beispiel zeigt, erlaubt es die strukturalistische Formulierung, Bezie­hungen zwischen Theorien aufzuzeigen und zu systematisieren. Sobald sich zei­gen laBt, daB mindestens zwei Theorien durch Spezialisierung oder den umge­kehrten Vorgang der Erweiterung auseinander hervorgehen, spricht man von ei­nem Theorienetz (vgl. ZELEWSKI [1993a], S. 151 f.). Die Theoriespezialisierung kann dabei folgende Grundformen annehmen:

• Terminologiespezialisierung: Bereinigung des terminologischen Apparats von redundanten Konstrukten bzw. als Umkehrung die Terminologieerweiterung durch die Einfiigung von weiteren Begriffen in die Theorie

• Gesetzesspezialisierung: Verscharfung der in die Theorie eingeffihrten we­sentlichen gesetzesartigen Aussagen

• Anwendungsspezialisierung: Einschriinkung des Bereichs der intendierten Anwendungen durch Erganzung von weiteren Randbedingungen

Das strukturalistische Theoriekonzept erlaubt durch das Konstrukt der Theorie­netze und -spezialisierungen weitergehende Aussagen fiber Beziehungen zwi­schen Theorien als andere wissenschaftstheoretische Konzepte. SoUte es gelin­gen, die zuvor dargesteUten Produktionsfunktionen als Theorienetz zu rekonstru­ieren, so ware es moglich, prazise Aussagen fiber den Zusammenhang der ver­schiedenen produktionstheoretischen Ansatze zu machen. Der Versuch, eine sol­che Beziehung zwischen den strukturalistischen Formulierungen der Aktivitats­analyse und der GUTENBERG-Produktionsfunktion nachzuweisen, ist bislang je­doch am Effizienzkonzept gescheitert (vgl. ZELEWSKI [1993a], S. 42 - 45). Bin Theorienetz wurde bisher lediglich ffir ModeUe innerhalb der aktivitatsanalyti­schen Theorie nachgewiesen (vgl. ZELEWSKI [1997]).

Das Konzept der strukturalistischen Produktionstheorie steUt somit einen interes­santen Ausgangspunkt ffir weitere Forschungsaktivitaten dar, als deren Ergebnis eine geschlossene DarsteUung des produktionstheoretischen Lehrgebaudes ent­stehen konnte.

Page 269: Produktionstheorie ||

258 5. Neuere Entwicklungen der Produktionstheorie

5.2 Die Theorie unscharfer Produktionsfunktionen 5.2.1 Unsicherheit in der Produktionstheorie

Die von BODE [1994] sowie BOGASCHEWSKY [1995] formulierte Theorie un­scharfer Produktionsfunktionen ist ein neuartiger Ansatz zur Beriicksichtigung von Unsicherheit in der Produktionstheorie. 1m Gegensatz zu den bislang behan­delten deterministischen Modellen der Produktionstheorie wird dabei die An­nahme aufgegeben, daB sich alle relevanten Daten und AbHiufe bei hinreichender Detaillierung der Darstellung eindeutig festlegen bzw. vorhersagen lassen. Unsi­cherheit in der Produktion kann sich insbesondere auf folgende Sachverhalte be­ziehen:

• Nachfragemengen • Beschaffungsmoglichkeiten • Qualitiit von Einsatzfaktoren und Erzeugnissen • Anteil von AusschuB, Schwund und Verderb • tatsachlich nutzbare Maschinenkapazitiit • Dauer von ProduktionsabHiufen

Derartige Unsicherheiten werden hervorgerufen durch Einfliisse, die sich zum groBten Teil auBerhalb des EinfluBbereichs des Untemehmens befinden, z.B. klimatische Gegebenheiten, die wirtschaftliche Lage, Ausfiille von Lieferanten oder Maschinen, technisch begriindete Toleranzen bei den Maschinen oder die Effektivitat des Arbeitskriifteeinsatzes. Ein einfacher Ansatz zur Beriicksichti­gung von Unsicherheiten sind Sensitivitiitsanalysen, mit deren Hilfe sich ermit­teln laBt, wie die optimale Losung eines deterministischen Modells auf Parame­terschwankungen reagiert.

Bereits seit liingerer Zeit bekannt sind Ansatze der stochastischen Produktions­theorie (vgL hierzu die Ausfiihrungen bei BOGASCHEWSKY [1995], S. 281 ff. und FANDEL [1996], S. 179 ff.), die Faktoreinsatzmengen, Ausbringungsmengen, Produktionskoeffizienten oder andere GroBen eines produktionswirtschaftlichen Modells als ZuJallsvariable auffassen, die zugehorigen Wahrscheinlichkeitsver­teilungen ermitteln und eine Losung mit Hilfe von Chance-Constrained-Model­len, Sicherheitsaquivalenten oder anderen stochastischen Modellen versuchen. Wiihrend stochastische Modelle Risikoerwartungen, d.h. die Kenntnis objektiver oder subjektiver Wahrscheinlichkeiten voraussetzen, laBt sich mit unscharfen Modellen auch der Fall der UngewiBheit erfassen, der durch einen geringeren Informationsstand gekennzeichnet ist.

Page 270: Produktionstheorie ||

5.2 Die Theorie unschaifer Produktionsfunktionen 259

Weiter bezieht sich bei den genannten Modelltypen die Unsicherheit in erster Li­nie auf die eingesetzten oder zu produzierenden Gutermengen, die Theorie un­scharfer Produktionsfunktionen beriicksichtigt dariiber hinaus den Fall, daB nicht eindeutig feststeht, welche Guterarten tiberhaupt produziert werden bzw. an der Produktion beteiligt sind. Vielmehr besteht ein gewisser Grad an Unschfufe hin­sichtlich der Beteiligung einer Gtiterart an der Produktion. Derartige Kenntnisse sind vor allem bei der Planung der Produktion von groBer Bedeutung.

BODE stellt seinen Ansatz am Beispiel der Produktion von Informationen dar (vgl. auch BODE [1993]). Gerade dabei steht hliufig ex ante nicht fest, we1che Informationsquellen mit welcher Intensitiit heranzuziehen sind, urn das ge­wtinschte Ergebnis zu erarbeiten. BOGASCHEWSKY stellt die Unschfufe beztiglich des AusmaBes und vor allem der Auswirkungen von Umweltbelastungen, die sich aus unzureichenden naturwissenschaftlich-technischen Kenntnissen, schwanken­den ProzeBniveaus und teilweise nur qualitativ vorgegebenen Urnweltzielen er­geben kannen, in den Mittelpunkt seiner Untersuchungen (vgl. BOGASCHEWSKY [1995], S. 285 ff.)

5.2.2 Hilfsmittel der unscharfen Produktionstheorie

Der Ansatz der unscharfen Produktionsfunktionen baut auf zwei Hilfsmitteln auf: Zum einen wird als Produktionsmodell die bereits in Abschnitt 3.3 behandelte betriebswirtschaftliche Input/Output-Analyse zugrunde gelegt, mit der sich auch mehrstufige Produktionsprozesse darstellen lassen, zum anderen kommt als ma­thematisches Konzept zur Abbildung der Unsicherheit bzw. Unschfufe die im folgenden in Grundztigen dargestellte unscharfe Mengenlehre (fuzzy set theory, vgl. z.B. ROMMELFANGER [1988] sowie ZADEH [1965]) zur Anwendung. Die daraus resultierende Produktionsfunktion wird als Typ D bezeichnet (vgl. BODE [1994], S. 467).

Mit der unscharfen Mengenlehre lassen sich auch Unbestimmtheiten erfassen, die tiber die stochastische Unsicherheit hinausgehen, z.B. begriffliche Unschfufen oder eine unscharfe Abgrenzung von KlassenzugehOrigkeiten (vgl. ZIM­MERMANN [1975], S. 785). 1m Gegensatz zur klassischen Mengenlehre, in der ein Element einer Grundmenge x E G entweder Bestandteil einer Menge Mist oder nicht, wird in der unscharfen Mengenlehre jedem Element ein Zugehorigkeits­grad ZM (x) zugeordnet, der beliebige Werte zwischen Null und Eins annehmen kann und angibt, in welchem MaBe das Element x der Menge M angehart. In der

Page 271: Produktionstheorie ||

260 5. Neuere Entwicklungen der Produktionstheorie

klassischen Mengenlehre, die als Spezialfall in der unscharfen Mengenlehre ent­halten ist, betriigt der Zugehorigkeitsgrad Smnit entweder Null oder Eins:

falls x eM

falls x eM

Bei einer unscharfen Menge sind hingegen folgende Zugehorigkeitsgrade mog­lich:

In Abbildung 87 ist als Beispiel ffir eine unscharfe Menge eine unscharfe Zuge­horigkeitsfunktion fUr die Menge aller reellen Zahlen, die sehr viel groBer als 5 sind, angegeben.

M:={xlxe9t; x»5}

z(x)

o ~--~~~~----r---~----------~ x 5 10 15 20

Abb. 87: Beispiel fUr eine Zugehorigkeitsfunktion

Wiihrend ftir alle Zahlen bis einschlieBlich 5 eindeutig feststeht, daB sie nicht zu dieser Menge gehoren, und man ftir Zahlen tiber 20 davon ausgehen kann, daB sie einvemehmlich als sehr viel groBer als 5 aufgefaBt werden, besteht in dem dazwi­schen liegenden Bereich Unschiirfe hinsichtlich des Zugehorigkeitsgrades. Je groBer eine Zahl ist, desto hoher ist ihr ZugehOrigkeitsgrad zu der Menge M. Der exakte VerIauf der Zugehorigkeitsfunktion hangt unter anderem von den subjek­tiven Einschiitzungen des Entscheidungstriigers abo Bei dem in Abbildung 87 an-

Page 272: Produktionstheorie ||

5.2 Die Theorie unscharfer Produktionsfunktionen 261

gegebenen konvexen, steigenden Verlauf der Zugehorigkeitsfunktion gilt z.B. fUr die Zahl 10 ein ZugehOrigkeitsgrad von 0,1 zu der Menge der Zahlen, die sehr viel groBer als 5 sind, d.h. 10 wird noch fast gar nicht als sehr viel groBer als 5 empfunden. Ab dem Wert 15 nimmt der ZugehOrigkeitsgrad sehr schnell zu, bis er bei 20 den Wert I erreicht.

Allgemein wird die unscharfe Menge M, die zu jedem Element auch seinen Zu­gehorigkeitsgrad angibt, wie folgt definiert:

M = {(X,ZM(X)) I xEG}

Die Elemente der unscharfen Menge sind somit Tupel aus dem jeweiligen Wert und seinem Zugehorigkeitsgrad. Nehmen die Zugehorigkeiten ausschlieBlich die Werte Null und Eins an, so erhalt man eine klassische Menge, die als Spezialfall in der unscharfen Mengenlehre enthalten ist.

Bei der Einfiihrung von unscharfen Zugehorigkeitsgraden ist zu beachten, daB diese nicht mit Wahrscheinlichkeiten verwechselt werden. Der Unterschied UiBt sich wie folgt veranschaulichen: Eine Wahrscheinlichkeit von 0,1 bedeutet, daB ein Ereignis bei zehnmaliger Betrachtung eines Sachverhalts voraussichtlich ein­mal eintritt, d.h. vollstiindig zur Menge M gehOrt, und neunmal nicht eintritt. Ein Zugehorigkeitsgrad von 0,1 besagt jedoch, daB bei jeder Betrachtung das betref­fende Element zu 10% zu der Menge M gehort und zu 90% nicht.

Wie in der klassischen Mengenlehre, so sind auch fiir unscharfe Mengen Ver­knupfungsoperationen definiert, mit deren Hilfe im folgenden Abschnitt die un­scharfe Input/Output-Analyse eingefiihrt wird. Ais wichtigste Operationen wer­den hier die UND-Verkniipfung (Disjunktion) und die ODER-Verkniipfung (Konjunktion) erHiutert.

Analog zur klassischen Mengenlehre bedeutet eine UND-Verknupfung der un­scharfen Mengen M 1 und M 2' daB ihre Schnittmenge gebildet wird, die sich graphisch als Einhiillende des Durchschnitts der Flache unter den Graphen der beiden Zugehorigkeitsfunktionen darstellen laBt (vgl. Abbildung 88). Die Ele­mente dieser Menge miissen beiden unscharfen Ausgangsmengen mindestens mit demselben Grad angehOren, d.h. mathematisch wird die aus der UND­Verkniipfung resultierende ZugehOrigkeitsfunktion durch den Minimum-Operator erzeugt:

Page 273: Produktionstheorie ||

262 5. Neuere Entwicklungen der Produktionstheorie

z(x)

~ (x) I

o x

Abb. 88: UND-Verkniipfung unscharfer ZugehOrigkeitsfunktionen

Eine ODER-Verknupfung der unscharfen Mengen M} und M2 bedeutet dement­sprechend, daB die Vereinigungsmenge betrachtet wird, d.h. die Einhiillende der Vereinigung der FHichen unter den Graphen der beiden Zugehorigkeitsfunktionen (vgl. Abbildung 89).

z(x)

o x

Abb. 89: ODER-Verkniipfung unscharfer Zugehorigkeitsfunktionen

Mathematisch wird die aus der ODER-Verkniipfung resultierende ZugehOrig­keitsfunktion durch den Maximum-Operator erzeugt, d.h. der gemeinsame Zuge­horigkeitswert eines Elements entspricht dem hOchsten der beiden einzelnen Zu­gehorigkeitswerte:

Page 274: Produktionstheorie ||

5.2 Die Theorie unscharfer Produktionsfunktionen 263

Ml U M2 == ZM\ V ZM2:= max {ZM\ (x); ZM2 (x)}

Da ffir beide Arten von Verkntipfungen das Assoziativgesetz gilt, konnen un­scharfe Zugehorigkeitsfunktionen rekursiv miteinander verkntipft werden.

5.2.3 Unscharfe Input/Output-Analyse

Die unscharfe Produktionsfunktion yom Typ D ist eine Erweiterung der in Ab­schnitt 3.3 behandelten Produktionsfunktion yom Typ D, d.h. der betriebswirt­schaftlichen Input/Output-Analyse. Dabei wird von einer Produktionsstruktur ausgegangen, die Unschiirfen beztiglich der Produkt- und Faktorarten sowie der Leistungs- und der Absatzbeziehungen aufweist. Durch eine geeignete Aggrega­tion der Unschiirfen kann sie mit Hilfe der oben eingefiihrten Verkntipfungen in das gesuchte Produktionsmodell tiberfiihrt werden.

Die wesentlichen Elemente einer Produktionsstruktur sind die Produktionsstellen und ihre gegenseitigen Lieferbeziehungen, die dabei ausgetauschten Gtiterarten sowie die an den Markt gelieferten Endproduktarten. Durch die Einbeziehung von Unschiirfe in die Produktionsstruktur kann diese insbesondere urn Informa­tionen dartiber erweitert werden, ob und mit welcher Bestimmtheit die einzelnen Gtiterarten am ProduktionsprozeB beteiligt sind (vgl. hierzu und im folgenden BODE [1994], S. 472 ff.).

Die betrachtete Produktionsstruktur besteht aus n Produktionsstellen, die zu einer Menge S zusammengefaBt werden:

S={Sl,,,,,Sn}

Diese Produktionsstellen sind teilweise durch unscharfe Leistungsbeziehungen i, j miteinander verbunden, die sich als unscharfe Menge darstellen lassen:

Rs = {(i,j,ZRs (i,j))}

Diese Menge wird auf der Grundmenge alIer moglichen Leistungsbeziehungen aufgespannt:

Rs = {(i,j) I (i,j) E S2 1\ Yij; o} ?

Dabei bedeutet der Operator> "ist moglicherweise groBer als".

In Abbildung 90 ist der GOZINTo-Graph einer unscharfen Produktionsstruktur dargestellt. Darin bezeichnen zR (i, j) die Unschiirfe hinsichtlich einer Lieferbe-

s

Page 275: Produktionstheorie ||

264 5. Neuere Entwicklungen der Produktionstheorie

ziehung von Stelle i nach Stelle j und Zx (i) die Unscharfe hinsichtlich einer End­produktart i.

Abb. 90: Beispiel einer unscharfen Produktionsstruktur

Die zugehorige Strukturmatrix enthaIt statt einer Eins fUr eine tatsachlich ge­nutzte Lieferbeziehung irn klassischen Fall die entsprechende Zugehorigkeits­funktion:

~ = ( ZRs ~1,1) zR (N,I)

s

mit: ZRs (i,j) E [0,1] i,j = 1, ... ,n

Urn die gesamte Unscharfe zR (i) der an einer Stelle erzeugten Giiterart i, d.h. das AusrnaB, mit dern diese Giiterart an der Produktion beteiligt ist, bestimmen zu konnen, rniissen die Unscharfen der sie betreffenden Lieferbeziehungen und Endprodukte aggregiert werden. Die dabei zur Anwendung kommende Verkniip­fung hiingt von der Art der Produktionsstruktur ab:

• Eine reine Absatzstelle gibt lediglich Endprodukte an den Markt ab (vgl. Ab­bildung 91). Ihre aggregierte Unscharfe entspricht damit der Unscharfe der entsprechenden Endproduktart:

i = 1, ... ,n A N(i) = 0

Abb. 91: Reine Absatzstelle

Page 276: Produktionstheorie ||

5.2 Die Theorie unscharfer Produktionsfunktionen 265

• Bei einer linearen Produktionsstruktur findet ein verzweigungsfreier Produk­tionsablauf statt; die Stelle i liefert direkt an eine Absatzstelle (vgl. Abbildung 92) oder eine andere Stelle. Der Einsatz der Gtiterart i hangt nicht nur von ih­rer eigenen Unscharfe, sondem auch von der Unscharfe aller im Produktions­ablauf nachfolgenden Produkte abo Die aggregierte Unscharfe ergibt sich aus einer UND-V erkntipfung der beteiligten Gtiterarten:

zR(i) = ZRs (i,j) /\ ZR(j) = min {ZRs (i,j);ZR(j)}

Abb. 92: Lineare Produktionsstruktur

• Bei einer konvergierenden Produktionsstruktur (vgl. Abbildung 93) gehen mehrere Gtiter in eine Produktionsstelle ein. Dabei hangt die Unscharfe jeder in das Produkt k eingehenden Gtiterart tiber eine UND-V erkntipfung von des­sen Unscharfe ab:

zR(i) = ZRs (i,k) /\ zR(k) = min {ZRs (i,k);ZR(k)}

ZR(j) = ZRs (j,k) /\ zR(k) = min {ZRs (j,k);ZR(k)}

Abb. 93: Konvergierende Produktionsstruktur

• Bei einer divergierenden Produktionsstruktur wird die in der Stelle i erzeugte Gtiterart an mehrere weitere Stellen abgegeben (vgl. Abbildung 94). Die Un­scharfe ftir Produktionsstelle i ergibt sich daher durch eine ODER-Verkntip­fung der aus ihr hervorgehenden Pfade:

Page 277: Produktionstheorie ||

266 5. Neuere Entwicklungen der Produktionstheorie

Abb. 94: Divergierende Produktionsstruktur

Aus diesen Grundtypen lassen sich die Aggregationsvorschriften ffir beliebige Produktionsstrukturen ableiten und bei der vollstiindigen Herleitung der unschar­fen Produktionsfunktion einsetzen.

Erweitert man den Definitionsbereich der Operatoren A und v auf Matrizen (zur mathematischen Herleitung vgl. BODE [1994], S. 487 f.) und erweitert die Bezie­hung ffir die divergierende Produktionsstruktur, so erhaIt man die folgende un­scharfe Produktionsfunktion ffir allgemeine Produktionssysteme ohne Eigenver­zehr:

bzw. in Matrixschreibweise:

Zusammen mit der Grundgleichung der herkommlichen Input/Output-Analyse

~=(E-Fr\!

ist das unscharfe Produktionsmodell vollstiindig formuliert, wobei die unscharfe Produktionsfunktion das Giiterartenmodell und die herkommliche Produktions­funktion das Giitermengenmodell darsteUt. Implizit bilden beide Funktionen die Produktionsstruktur ab, jedoch ordnet die erste Gleichung den Giiterarten eine

Page 278: Produktionstheorie ||

5.2 Die Theorie unscharfer Produktionsfunktionen 267

Unscharfe zu, wahrend die zweite Gleichung sie als detenninistisch beriicksich­tigt.

Damit ist auch die Bezeichnung als Produktionsfunktion yom Typ D gerechtfer­tigt: Nehmen die Unscharfen der Lieferbeziehungen und Gtiterarten lediglich die Werte Null und Eins an, dann entspricht das unscharfe Modell exakt dem her­kommlichen. Die Produktionsfunktion yom Typ D bietet die Moglichkeit, wiih­rend der Planung des Produktionsprozesses nicht nur die benotigten Gtitermengen zu bestimmen, sondem auch eine Aussage dariiber zu gewinnen, ob die berech­neten Gtitermengen tiberhaupt an der Produktion beteiligt sind.

5.2.4 Beurteilung der unscharfen Produktionstheorie

Wie oben ausgeftihrt, bietet die unscharfe Produktionsfunktion die Moglichkeit, Unsicherheiten hinsichtlich der an einem ProduktionsprozeB beteiligten Gtiterar­ten zu erfassen. ledoch ist fraglich, ob bei einer konkreten Anwendung die Un­scharfen der Produktionsbeziehungen hinreichend genau und unabhangig von subjektiven Einschatzungen ennittelt und die daraus resultierenden Bestimmt­heitsgrade der einzelnen Gtiterarten problemadaquat interpretiert werden konnen. Vielmehr ergeben sich neue Unsicherheiten hinsichtlich der Angemessenheit und des Umfangs der aus der Analyse ableitbaren Planungsaktivitaten sowie hinsicht­lich des Risikos von Fehlplanung bei unzuverlassigen Ausgangsdaten oder Fehlinterpretationen der Ergebnisse. Damit bleibt offen, ob der zusatzliche Auf­wand fUr die Bestimmung und Aggregation der Unscharfen tatsachlich zu einer signifikanten Reduktion der verbleibenden Restunsicherheit fiihrt.

Das oben dargestellte Modell ist von BODE lediglich als ein erster Versuch zur Abbildung unscharfer Strukturen in der Produktionstheorie konzipiert und am Beispiel der Produktion von Informationen veranschaulicht worden (vgl. BODE [1994], S. 481 ff.). Als Moglichkeiten zur Weiterentwicklung nennt er die Erfas­sung von Unsicherheiten auch beztiglich der Gtitermengen, die bislang mit dem detenninistischen Input/Output-Modell erfaBt werden, die Abbildung unscharfer Input/Output-Verhiiltnisse und die Dynamisierung des Ansatzes. Gerade die Kombination der Unscharfen von Gtiterarten und Gtitermengen liiBt weitergehen­de Interpretationen zu, stoBt jedoch auf schwerwiegende formale Probleme.

BOGASCHEWSKY schlagt einen anderen Weg ein: Er formuliert das Problem der Produktionsprogrammplanung als unscharfes lineares Programm mit unscharfen Parametem sowohl in den Restriktionen als auch in der Zielfunktion. Der zuge­horige zulassige Bereich hangt von der Art und der Verkntipfung der verschiede-

Page 279: Produktionstheorie ||

268 5. Neuere Entwicklungen der Produktionstheorie

nen Zugehorigkeitswerte ab; auch die ennittelte Losung weist eine gewisse Un­schlirfe auf (vgl. BOOASCHEWSKY [1995], S. 302 ff.).

Das Gebiet der unscharfen Produktionstheorie bietet eine Reihe von vielverspre­chenden Ansatzpunkten fur weitere Untersuchungen: So lassen sich Entschei­dungen zwischen Altemativen im Produktionsbereich, z.B. bei der Variantenfer­tigung, bei der Wahl von Wegen durch flexible Fertigungssysteme oder auch bei der Lieferantenwahl, mit Hilfe von unscharfen Mengen modellieren. Weiter ist es moglich, die Qualitiit von Produkten mit Hilfe einer unscharfen ZugehOrigkeits­funktion zu beschreiben, wobei verschiedene Qualitiitsstufen durch unterschiedli­che Zugehorigkeitsgrade ausgedriickt werden konnen.

5.3 Die Theorie der Dienstleistungsproduktion Die Produktion von Dienstleistungen wurde zwar bereits in Abschnitt 1.1.1 in die Definition des Produktionsbegriffs eingeschlossen, bislang aber allenfalls implizit beriicksichtigt. Vielmehr beziehen sich die zuvor behandelten produktionstheore­tischen Ansiitze mehr oder weniger ausschlieBlich auf die industrielle Produktion von Sachgtitem.

In der Literatur besteht Einigkeit dariiber, daB sich die fiir diesen Bereich gewon­nenen Aussagen nicht ohne wei teres auf die Produktion von Dienstleistungen iibertragen lassen (vgl. z.B. BREYER [1987]; CORSTEN [1988a], S. 82). Dennoch wurden die Betriebswirtschaftslehre der Dienstleistungsuntemehmen und insbe­sondere die Dienstleistungsproduktion iiber lange Zeit stark vemachliissigt; le­diglich einzelne Werke wie MALER! [1973] oder BEREKOVEN [1974] haben sich mit diesem Bereich beschiiftigt. Daneben wurden Produktionsfunktionen fur ein­zelne Branchen des Dienstleistungsbereichs, z.B. fiir Banken, Versicherungen, Verkehrsuntemehmen, offentliche Betriebe oder auch Hochschulen, entwickelt. Erst in den achtziger Jahren wurde damit begonnen, die Produktion von Dienst­leistungen systematisch zu untersuchen (vgl. z.B. ALTENBURGER [1980]; COR­STEN [1985], [1997bD.

1m folgenden werden die wichtigsten Ergebnisse dieser Entwicklungsrichtung dargestellt. In Abschnitt 5.3.1 werden zuniichst der Begriff der Dienstleistung definiert und die Besonderheiten der Dienstleistungsproduktion herausgearbeitet. Abschnitt 5.3.2 behandelt die unterschiedlichen Sichtweisen und Abschnitt 5.3.3 die einzelnen Phasen der Dienstleistungsproduktion. In Abschnitt 5.3.4 werden

Page 280: Produktionstheorie ||

5.3 Die Theorie der Dienstleistungsproduktion 269

abschlieBend Tendenzen zur Weiterentwicklung der Theorie der Dienstleistungs­produktion aufgezeigt.

5.3.1 Besonderheiten der Produktion von Dienstleistungen

Die Entwicklung modemer Volkswirtschaften ist unter anderem durch einen zu­nehmenden Anteil der Dienstleistungen an der WertschOpfung sowie durch eine zunehmende Anzahl von im Dienstleistungsbereich Beschaftigten gekennzeich­net. Nach der Drei-Sektoren-Hypothese von FOURASTIE [1949] unterscheidet z.B. das Statistische Bundesamt die folgenden Wirtschaftsbereiche:

• primiirer Sektor: Land- und Forstwirtschaft Fischerei, J agd

• sekundiirer Sektor: Energie- und Wasserversorgung, Bergbau verarbeitendes Gewerbe Baugewerbe

• tertiiirer Sektor: Handel Verkehr, Nachrichtentibermittlung Kreditinstitute, Versicherungen Wohnungsvermietung, sonstige Dienstleistungsuntemehmen private Haushalte und private Organisationen ohne Erwerbs­charakter Gebietskorperschaften, Sozialversicherung

In Abbildung 95 ist die Entwicklung des Anteils der Erwerbstiitigen in diesen drei Sektoren fUr den Zeitraum von 1849 bis 1993 in der Bundesrepublik Deutschland dargestellt (zu den Daten vgl. CORSTEN [1997b], S. 12).

Es zeigt sich, daB der Anteil des primaren Sektors im Zeitablauf kontinuierlich zurtickgegangen, der des tertiaren Sektors hingegen erheblich angestiegen ist. Der Anteil des sekundaren Sektors ist zunachst gestiegen, seit den siebziger Jahren aber zugunsten des tertiaren Sektors rUcklaufig. Die in den offiziellen Statistiken ausgewiesenen Zahlen unterschatzen diese Tendenz zur Tertiarisierung der Wirt­schaft sogar noch, da auch in Industrieuntemehmen Dienstleistungen in erhebli­chem Umfang erbracht werden (vgl. zu industriellen Dienstleistungen BUTTLER / STEGNER [1990]). Diese Entwicklung von einer Agrar- tiber die Industriegesell­schaft zur Dienstleistungsgesellschaft zeigt deutlich, von welcher Bedeutung die intensive Auseinandersetzung mit der Betriebswirtschaftslehre der Dienstlei­stungsuntemehmen ist.

Page 281: Produktionstheorie ||

270 5. Neuere Entwicklungen der Produktionstheorie

%

l00~-------------------------------------, 90

80 70 60

50

40

30

20 10

1849/54

ekundlirer Sektor

Abb. 95: EntwickIung des Dienstleistungssektors

tertiarer Sektor

Der Begriff der Dienstleistung erscheint zwar intuitiv kIar, bringt jedoch bei ge­nauerer Betrachtung erhebliche Schwierigkeiten mit sich. Ohne VollsUindigkeit anzustreben, seien zur Veranschaulichung zunachst einige typische Arten von Dienstleistungen genannt, wie sie am Markt angeboten werden:

• Vermittlungs- und Malderdienste • Rechts- und Steuerberatung, Wirtschaftspriifung

• Untemehmensberatung • Unterricht, Ausbildung • Personen- und Gtitertransport

• Lagerung

• Handel • Vermietung, Leasing • Kreditgewiihrung und -vermittlung

• Reparaturen, Wartung • Kunstausstellungen, Kino- und Theateraufftihrungen

• Reinigung • Beherbergung, Verpflegung • Leistungen von Arzten, Pflegediensten, Masseuren, Friseuren usw.

• offentliche Verwaltung

Weitere wichtige Dienstleistungen, die auch und teilweise vor aHem innerhalb von Industrieuntemehmen erbracht werden, sind insbesondere (vgl. KERN [1979], Sp.1651):

Page 282: Produktionstheorie ||

5.3 Die Theorie der Dienstleistungsproduktion 271

• Forschung und Entwicklung • Konstruktion • Arbeitsvorbereitung • innerbetrieblicher Transport • Instandhaltung • Kundendienst • Verwaltung

Diese Aufzahlungen zeigen, Wle vieWiltig und heterogen der Bereich der Dienstleistungen ist. Eine Definition des Dienstleistungsbegriffs mu13 gleichzeitig die Besonderheiten der einzelnen Auspragungen von Dienstleistungen erfassen und das ihnen Gemeinsame herausarbeiten. Daher ist es sinnvoll, als Ausgangs­punkt einer Begriffsbestimmung eine Abgrenzung zu der Herstellung von Sach­giitem vorzunehmen, wodurch die spezifischen Bestimmungsmerkmale der Dienstleistungen deutlicher werden. Ais Kriterien zur Abgrenzung der Dienstlei­stungsproduktion von der Sachgfiterproduktion werden insbesondere herangezo­gen:

(1) Immaterialitiit: 1m Gegensatz zu Sachgfitem sind Dienstleistungen stofflich nicht faBbar, bedfirfen aber teilweise eines materiellen Tragermediums, z.B. Transportleistungen (Kraftfahrzeug), Datenbanken (Disketten oder CD), In­formationen (Papier). Das Ergebnis der Dienstleistung materialisiert sich in der Regel am unter (5) genannten extemen Faktor.

(2) mangelnde Lagerfiihigkeit: Aus der Immaterialitat folgt, daB Dienstleistungen nicht auf Vorrat produziert und gelagert werden konnen. Diese Abhangigkeit von einer zum Teil stark schwankenden Nachfrage ffihrt dazu, daB in Dienstleistungsuntemehmen anstelle von vorproduzierten Produkten Perso­nal- und Anlagenkapazitaten haufig in erheblichem Umfang bereitgehalten werden mfissen, um stets in ausreichendem MaBe leistungsbereit zu sein, ins­besondere zur Bewaltigung von Spitzenbelastungen.

(3) uno-actu-Prinzip: Aus der mangelnden Lagerfahigkeit folgt, daB eine Dienstleistung in dem Moment erbracht werden muS, in dem sie nachgefragt wird. Es besteht also eine weitgehende Synchronitat von Produktion und Ab­satz. Haufig sind die Nachfrager zwar bereit, eine gewisse Wartezeit in Kauf zu nehmen, wird diese jedoch als unangemessen lang empfunden, so geht die Nachfrage verloren.

(4) Auftragsindividualitiit: 1m Gegensatz zu den meisten Sachgiitem sind Dienstleistungen vielfach in hohem MaBe auf den Auftraggeber zugeschnit-

Page 283: Produktionstheorie ||

272 5. Neuere Entwicklungen der Produktionstheorie

ten, z.B. bei Beratungsleistungen oder auch bei einem Haarschnitt. Oft ist dariiber hinaus die aktive Mitwirkung des Auftraggebers erforderlich, urn die gewtinschte Leistung entstehen zu lassen. Daraus ergibt sich gleichzeitig das Problem, daB sich die QualiUit einer Dienstleistung nicht objektiv bestimmen liiBt. Z.B. hangt beim Individualunterricht das Lemergebnis nicht nur von der Leistung des Lehrers, sondem auch von den Fiihigkeiten und der Anstren­gung des Schtilers abo

(5) Beteiligung des extemen Faktors: FUr die Produktion von Dienstleistungen ist wesentlich, daB neben intemen Produktionsfaktoren, die sich bereits im Verftigungsbereich des Untemehmens befinden, ein extemer Faktor als das Objekt, an dem die Dienstleistung erbracht werden solI, yom Auftraggeber der Dienstleistung bereitgestellt wird. Dieses Leistungsobjekt kann der Auf­traggeber selbst (z.B. beim Kinobesuch), eine von ibm benannte andere Per­son (z.B. beim Transport) oder ein von ihm ausgewiihltes Sachgut (z.B. bei einer Reparatur) sein.

Betrachtet man die genannten Merkmale genauer, so stellt man fest, daB diese Kriterien weder einzeln noch insgesamt eine trennscharfe Abgrenzung von Sach­gtitem und Dienstleistungen erlauben. So enthalten die meisten Sachgtiter mehr oder weniger groBe immaterielle Anteile wie Image, Bedtirfnisbefriedigung, Er­lebniswert. Auch Sachgtiter konnen eine auBerst geringe Lagerfiihigkeit aufwei­sen, z.B. im Lebensmittelbereich, im Extremfall werden sie sogar erst auf Anfor­derung erstellt (z.B. Softeis, frisch gemahlener Kaffee), sie konnen weiter auBerst individuell nach den Wtinschen eines Auftraggebers angefertigt werden (z.B. MaBanzug, Marktforschungsstudie). Beztiglich der Integration des extemen Fak­tors kann die Abgrenzung zwischen Sach- und Dienstleistungen aus den rechtli­chen Verhaltnissen folgen: So gilt die Reparatur eines Computers im Kunden­auf trag als Dienstleistung, dieselbe Tatigkeit bei der Uberarbeitung eines an­schlieBend als Second-Hand-Gerat verkauften Computers jedoch als Produktion eines Sachguts.

Es wird daher vorgeschlagen, auf eine strenge Abgrenzung von Sachgtitem und Dienstleistungen zu verzichten, sondem vielmehr alle GUter als Leistungsbiindel aufzufassen, die aus mehr oder weniger groBen Anteilen beider Kategorien beste­hen (vgl. ENGELHARDT et al. [1993]). Durch Gegentiberstellung der beiden fUr die Dienstleistungsproduktion als besonders typisch erachteten Merkmale "Immaterialitat" und "Grad der Integration des extemen Faktors" in einer Vier-

Page 284: Produktionstheorie ||

5.3 Die Theorie der Dienstleistungsproduktion 273

Felder-Matrix (vgl. Abbildung 96) lassen sich die unterschiedlichen Giiterarten anhand der Auspriigung dieser Kriterien charakterisieren:

Integration des extemen Faktors

Sondermaschine Untemehmens-

hoch beratung

CIM-LOsung

gering

Bauteile Datenbankdienst

ImmaterialiUit gering hoch

Abb. 96: Typologie der Giiterarten (in Anlehnung an: ENGEUIARDT et aI. [1993], S. 417)

So sind Bauteile typische rnaterielle Giiter, die irn wesentlichen autonorn, d.h. ohne Einwirkung des extemen Faktors, produziert werden. Eine Sondermaschine hingegen ist zwar eindeutig ein rnaterielles Gut, wird jedoch weitgehend nach den Wiinschen des Auftraggebers angefertigt. Die Untemehmensberatung ist ein typisches immaterielles Gut, das in hohern MaBe auf die Mitwirkung des Auf­traggebers angewiesen ist. Ein Datenbankdienst hingegen ist zwar eindeutig ein immaterielles Gut, wird jedoch stark standardisiert angeboten. Bei einer korn­pletten CIM-Losung, die sowohl die Fertigungsanlagen als auch die zu ihrern Betrieb erforderlichen Programme zur Produktionsplanung und -steuerung urn­faBt, treten sowohl rnaterielle aIs auch immaterielle Anteile auf; ein Teil der Bau­steine ist standardisiert, ein groBer Teil wird auf die Bediirfnisse des Anwenders zugeschnitten.

Urn die Behandlung der Dienstleistungsproduktion in der Produktionstheorie dar­Zllstellen, wird in den folgenden Ausfiihrungen dennoch der enurnerativ verstan­dene Begriff der Dienstleistung verwendet.

Page 285: Produktionstheorie ||

274 5. Neuere Entwicklungen der Produktionstheorie

5.3.2 Sichtweisen der Dienstleistungsproduktion

Die Erstellung von Dienstleistungen Hillt sich aus drei verschiedenen Blickwin­keln betrachten. Diese Vorgehensweise wird in Abbildung 97 veranschaulicht (vgl. CORSTEN [1997b], S. 21 ff.):

Vorkombination

potentialorientierte Sieht

.. p

extemer Faktor

" Leistungs-

bereitschaft

proze8orientierte Sieht

Abb. 97: Sichtweisen der Dienstleistungsproduktion

.. p Endkombination

ergebnisorientierte Sieht

• Bei der potentialorientierten Sieht der Dienstleistungsproduktion steht die als Vorkombination bezeichnete Leistungsfahigkeit bzw. die Bereitschaft des Dienstleistungsuntemehmens zur Erbringung bestimmter Leistungen im Vor­dergrund. Die Vorkombination wird durch die Kombination der yom Unter­nehmen bereitgestellten intemen Produktionsfaktoren Werkstoffe, Betriebs­mittel und Arbeitskraft erzeugt. Die Dienstleistung selbst wird bei dieser Sichtweise als immaterielles Leistungsversprechen aufgefaBt.

• In prozefJorientierter Sieht wird der DienstleistungsprozeB, also der Vorgang der Erstellung einer Dienstleistung, der durch das Auftreten des extemen Fak­tors angestoBen wird, betrachtet. Dabei wird untersucht, wie die yom Unter­nehmen vorgehaltene Leistungsbereitschaft mit dem extemen Faktor und wei­teren intemen Produktionsfaktoren kombiniert wird. Da ein Dienstleistungs­prozeB erst durch die autonome Einbringung des extemen Faktors ausgelOst wird, ist er nicht vollstandig durch den Anbieter der Dienstleistung disponier­bar.

• Die ergebnisorientierte Sieht stellt auf die Endkombination ab, bei der die Dienstleistung als immaterielles Ergebnis einer dienstleistenden Tatigkeit ent­steht. Die Wirkung einer Dienstleistung konkretisiert sich am extemen Faktor

Page 286: Produktionstheorie ||

5.3 Die Theorie der Dienstleistungsproduktion 275

als Objekt der Dienstleistungsproduktion in Fonn der Veranderung oder aueh Erhaltung von Eigensehaften.

Diese drei Siehtweisen dienen nieht der altemativen, sondem der additiven Be­sehreibung des Phanomens der Dienstleistungsproduktion. Eine strenge Abgren­zung ist nieht erforderlieh und Mufig aueh nieht moglieh, da sieh z.B. bei flueh­tigen Dienstleistungen wie einer Kinoauffiihrung der ErstellungsprozeS und das Ergebnis nieht voneinander trennen lassen.

5.3.3 Phasen der Dienstleistungsproduktion

1m folgenden wird die Analyse der Dienstleistungsproduktion anhand der aueh bei der SaehgUterproduktion betraehteten Phasen des Produktionsprozesses - In­put, Transfonnation, Output - durehgefiibrt (vgl. aueh CORSTEN [1993], Sp. 766 ff.). Diese Vorgehensweise, die in Abbildung 98 veransehaulieht wird, ist nieht mit den Sichtweisen des vorgehenden Absehnitts identiseh, da zum einen der Einsatz von internen Produktionsfaktoren sowohl fUr die Erstellung des Lei­stungspotentials als aueh wiihrend des Transformationsprozesses erfolgen muS, der exteme Faktor hingegen erst wiihrend des Leistungsprozesses hinzutritt. Weiter werden hier sowohl die Erstellung der Vorkombination (potentialorien­tierte Sieht) als aueh die Durehfuhrung der Endkombination (prozeBorientierte Sieht) der Transfonnationsphase zugeordnet.

INPUT TRANSFORMATION OUTPUT

interne Produktions-faktoren - Werkstoffe

.. Vorkombination ... - Betriebsmittel - Arbeitskraft

veranderter I externer Faktor I • Endkombination externer r

Faktor

Abb. 98: Phasen der Dienstleistungsproduktion

Die naehfolgenden Ausfiihrungen beziehen sich im wesentliehen auf die Produk­tion von Dienstleistungen im allgemeinen, bisweilen wird eine Veransehauli-

Page 287: Produktionstheorie ||

276 5. Neuere Entwicklungen der Produktionstheorie

chung durch spezielle Beispiele vorgenommen. In den verschiedenen Phasen der Dienstleistungsproduktion treten als spezielle Problemstellungen auf:

• Offensichtlich spielen die verschiedenen. Kategorien des Input bei der Dienst­leistungsproduktion eine besondere Rolle. Dabei ist zu unterscheiden zwischen den internen Produktionsfaktoren Werkstoffe, Betriebsmittel und Arbeitskraft, durch deren zweckgerichtete Kombination die als Vorkombination bezeichnete Leistungsbereitschaft des Unternehmens erzeugt wird, und dem externen Fak­tor, durch dessen Hinzutreten bei gleichzeitigem Einsatz von weiteren internen Produktionsfaktoren die Endkombination ausgelost wird. In Abschnitt 5.3.3.1 wird das Faktorsystem der Dienstleistungsproduktion dargestellt.

• 1m ProduktionsprozeB wird die Transformation der Einsatzfaktoren in den Output durchgefiihrt. Der TransJorrnationsprozefJ bei der Dienstleistungspro­duktion vollzieht sich auf den beiden aufeinanderfolgenden Stufen der Vor­kombination und der Endkombination, auf denen unterschiedliche Zeithori­zonte und EinftuBgroBen von Bedeutung sind. In Abschnitt 5.3.3.2 werden diese beiden Stufen aus produktionstheoretischer Sicht untersucht.

• Als Output der Dienstleistungsproduktion gilt - wie auch bei der in Abschnitt 5.3.2 genannten ergebnisorientierten Sichtweise - die Vedinderung oder Er­haltung von bestimmten Eigenschaften des externen Faktors. In Abschnitt 5.3.3.3 werden die sich aus diesem Produktbegriff ergebenden Besonderheiten behandelt.

5.3.3.1 Die Einsatzfaktoren der Dienstleistungsproduktion

Urn die inputbezogenen Speziflka der Dienstleistungsproduktion herauszuarbei­ten, ist verschiedentlich untersucht worden, ob es spezielle Einsatifaktoren gibt, die fUr diese Art der Leistungserstellung typisch sind und bei der Produktion von Sachgiitern nicht verwendet werden. Dabei treten jedoch wiederum die bereits in Abschnitt 5.3.1 dargestellten Abgrenzungsprobleme zwischen Sach- und Dienst­leistungen auf, so daB keines der in diesem Zusammenhang vorgeschlagenen all­gemeinen oder wirtschaftszweigspezifischen Faktorsysteme letztlich befriedigend ist (vgl. hierzu die Diskussion in CORSTEN [1985], S. 36 -79).

Daher hat CORSTEN ([1997b], S. 132 ff.) das in Abbildung 99 dargestellte, auf dem in Abschnitt 1.1.1 eingefiihrten Faktorsystem von GUTENBERG aufbauende allgemeine ProduktionsJaktorsystem entworfen, mit dem sich samtliche Erschei­nungsformen der Produktion, d.h. sowohl die Erstellung von Dienstleistungen als

Page 288: Produktionstheorie ||

5.3 Die Theorie der Dienstleistungsproduktion 277

/~ interne Faktoren externe Faktoren

nieht le~kte ~de Objekte

I '\ I '\

dispositiver Faktor

I "

Elementar­faktoren

originiir derivativ

Planuf I " Organi­sation

Verbrauehs­faktoren

I " Betriebs- Werk-stoffe stoffe

I "

materiell immateriell Mensehen Tiere

Regie­filioren

I " Nominal- Real-faktoren faktoren

I " Ipforma- Reehte tionen

Potential-

7 tor",

materiell immateriell

I" Roh- Hilfs- natiirliehe Betriebs-stoffe stoffe Umwelt mittel

Li~/ \~den Luft Wasser

Real- Nominal-faktoren faktoren

oi~~ j, ~-bezogene Darlehens-Arbelt werte

Informa- Dienst-tionen leistungen

I " intern extern

I " private offentliehe

Abb. 99: Allgemeines Produktionsfaktorsystem (in Anlehnung an CORSTEN

[1997b], S. 135)

Page 289: Produktionstheorie ||

278 5. Neuere Entwicklungen der Produktionstheorie

auch von Sachgiitern, angemessen erfassen lassen. Dieses Faktorsystem umfaBt sowohl interne als auch externe Produktionsfaktoren, materielle und immaterielle Faktoren und auch die verschiedenen Aspekte, unter denen die natiirliche Umwelt mit dem Unternehmen in Beziehung stehen kann.

Gegenuber dem GUTENBERG'schen Produktionsfaktorsystem weist dieser Ansatz insbesondere folgende Erweiterungen auf:

• Ais interne Produktionsfaktoren werden neben dem dispositiven Faktor, der wie ublich in die Unternehmensfuhrung als originaren dispositiven Faktor und die derivativen Faktoren Planung, Organisation und Kontrolle gegliedert wird, und den Elementarfaktoren zusatzlich die Regiefaktoren aufgefuhrt. Darunter versteht man den Wareneinsatz im Handel, der das Unternehmen ohne we­sentliche Verlinderungen - es werden lediglich eine zeitliche Transformation in Form der Lagerung sowie gegebenenfalls eine Mengenlinderung durch Auf­spaltung yom GroBgebinden vorgenommen - wieder verlliBt. Da dieser Faktor durch das Unternehmen autonom disponiert werden kann, zlihlt er zu den in­ternen Produktionsfaktoren.

• Wlihrend die Verbrauchsfaktoren wie ublich in Roh-, Hilfs- und Betriebsstoffe gegliedert werden, ergeben sich bei den Potentialfaktoren zwei wesentliche Anderungen: Ais materielle Potentialfaktoren werden neben den Betriebsmit­teln auch die Nutzungsmoglichkeiten der natiirlichen Umwelt in ihren Auspra­gungen Licht, Luft, Wasser und Boden genannt. Uber die materiellen Poten­tialfaktoren hinaus werden die in Realfaktoren und Nominalfaktoren geglie­derten immateriellen Potentialfaktoren aufgefuhrt. Zu den Realfaktoren zlihlt neben Informationen, Dienstleistungen und Rechten auch die objektbezogene Arbeit; unter den Nominalfaktoren versteht man Geld, Darlehenswerte und Beteiligungen.

• Weiter enthalt das angegebene Produktionsfaktorsystem explizit den extemen Faktor, der wie folgt differenziert wird: Ais lebende Auspragungen des exter­nen Faktors kommen Menschen oder Tiere in Betracht. Bei den nicht lebenden Auspragungen lassen sich materielle und immaterielle Objekte unterscheiden, die analog zu den entsprechenden Auspragungen der Potentialfaktoren weiter unterteilt werden konnen.

SchlieBlich sind in dem Faktorsystem branchenspezifische Module mit zusatzli­chen Produktionsfaktoren fUr den Handel, Verkehrsbetriebe, Banken und Versi­cherungen vorgesehen, die jedoch hier nicht in die Abbildung einbezogen sind. Diese haben die Aufgabe, die allgemeinen Produktionsfaktoren urn fur die jewei-

Page 290: Produktionstheorie ||

5.3 Die Theorie der Dienstleistungsproduktion 279

lige Branche besonders wichtige zusatzliche Faktoren zu erganzen. Dabei wird in dem Produktionsfaktormodul fUr Handelsuntemehmen der in dem allgemeinen Produktionsfaktorsystem vorgesehene Regiefaktor in die einzelnen Handelswaren aufgespalten, ffir Verkehrsbetriebe werden die Betriebsmittel insbesondere in Verkehrswege und Stationen untergliedert, bei Versicherungen ist der monetare Faktor in Form von Schadensvergtitungen von besonderer Bedeutung, bei Ban­ken in Form der Nutzung von Zahlungsmitteln und des Zahlungsverkehrs.

Analog dazu lassen sich auf Basis dieses allgemeinen Produktionsfaktorsystems auch Module fur weitere, bisher nicht explizit erfaBte Branchen formulieren, so daB es tatsachlich in der Lage ist, nicht nur die Sachgtiterproduktion sowie einige spezielle Auspragungen der Dienstleistungsproduktion abzudecken, sondem sich als hinreichend flexibel erweist, urn auf beliebige Produktionen angewendet zu werden.

5.3.3.2 Der Transformationsprozefi der DienstIeistungsproduktion

Als TransformationsprozeB der Dienstleistungsproduktion ist zum einen der Auf­bau der Leistungsbereitschaft in Form der Vorkombination anzusehen, zum ande­ren die Erbringung der Dienstleistung selbst in Form der Endkombination. Dar­aus ergibt sich, daB es sich bei der Dienstleistungsproduktion regelmaBig urn ei­nen mehrstufigen ProduktionsprozeJ3 handelt, der zumindest die beiden genann­ten Stufen umfaBt, die sich jedoch ihrerseits wiederum in einzelne Phasen unter­gliedem lassen. Weitergehende Ausfuhrungen zur Mehrstufigkeit der Dienstlei­stungsproduktion finden sich bei ALTENBURGER [1980].

1m folgenden wird untersucht, inwieweit sich die Transformationsprozesse auf diesen beiden Stufen der Dienstleistungsproduktion mit Hilfe von produktions­theoretischen Modellen abbilden lassen. Dabei zeigt sich wiederum, daB trotz aller Besonderheiten der Produktion von Dienstleistungen auch zahlreiche Ge­meinsamkeiten mit der industriellen Leistungserstellung bestehen.

1m Rahmen der Vorkombination erfolgt der Autbau des Leistungspotentials eines Dienstleistungsuntemehmens, der dem Absatz der Dienstleistungen zeitlich vor­angehen muB. Das Leistungspotential entspricht der maximalen Kapazitat des Dienstleistungsuntemehmens und gibt eine Obergrenze ffir die anschlieBend kon­kret verfugbare Leistungsbereitschaft vor.

Die auf dieser Stufe auftretenden Entscheidungsprobleme entsprechen formal weitgehend der auf der strategischen bzw. taktischen Planungsebene angesiedel-

Page 291: Produktionstheorie ||

280 5. Neuere Entwicklungen der Produktionstheorie

ten langfristigen Technologiewahlentscheidung bei Industrieuntemehmen. Unter Bertlcksichtigung des voraussichtlichen Absatzes sind die Kapazitaten des Dienstleistungsuntemehmens so zu dimensionieren und auszugestalten, daB das Untemehmen die Minimalkostenkombination der beteiligten Produktionsfaktoren unter Antizipation von im Entscheidungszeitpunkt bereits absehbaren Entwick­lungen realisiert. Hierbei kommen unter anderem die in Abschnitt 4.2.2 darge­stellten Ansatze der langfristigen dynamischen Produktionstheorie zum Einsatz, die sich aufgrund des hohen Aggregationsgrads der Betrachtung z.B. in Form einer neoklassischen Produktionsfunktion modellieren lassen.

Dienstleistungsspezifische Besonderheiten bei der Gestaltung der Leistungsbe­reitschaft in Form der Vorkombination ergeben sich aufgrund folgender Zusam­menhange:

• Die Produktion von Dienstleistungen weist in der Regel eine hohe Personal­intensitiit auf. Vor aHem die personliche Seite der Erbringung einer Dienstlei­stung ist kaum einer Automatisierung zuganglich, so daB der Aufbau einer quantitativ und qualitativ angemessenen Personalkapazitat von groBer Bedeu­tung ist.

• Da Dienstleistungen nicht lagerfahig sind, Hillt sich als Instrument zur Koordi­nation von Produktion und Absatz ausschlieBlich die Synchronisation anwen­den. Eine Vorausproduktion ffir absehbare Nachfragespitzen ist nicht moglich. In Abhangigkeit von den voraussichtlichen Schwankungen bei der Einbrin­gung des extemen Faktors ist daher eine Ausrichtung der vorgehaltenen Kapa­zitat sowohl im Personal- als auch im Betriebsmittelbereich eher an der Spit­zenbelastung erforderlich, wahrend bei der SachgUterproduktion haufig eine Orientierung an der mittleren Belastung ausreicht.

Aus diesen beiden Aspekten ergibt sich, daB die Dienstleistungsproduktion weit­aus starker als die Sachgiiterproduktion durch einen hohen und kaum abbaufahi­gen Fixkostenblock gekennzeichnet ist. Diese Fixkosten werden nur in dem Aus­maB zu Nutzkosten, wie es gelingt, in der Leistungsphase die Kapazitaten auszu­lasten; bei Unterauslastung bingegen ist ein Dienstleistungsuntemehmen durch einen hohen Anteil an Leerkosten gekennzeichnet. Zur BewaItigung von zeitwei­ligen Schwankungen der Inanspruchnahme wird haufig bereits in der Phase des Kapazitatsaufbaus eingeplant, die Stammbelegschaft in Spitzenzeiten durch Aus­hilfskrlifte zu erganzen; bei den Betriebsmitteln hingegen sind derartige Aus­weichmoglichkeiten eher die Ausnahme.

Page 292: Produktionstheorie ||

5.3 Die Theorie der Dienstleistungsproduktion 281

Bei der Endkombination wird der durch die Ausgestaltung der Vorkombination vordeterminierte DienstleistungsprozeB vollzogen, indem bei Auftreten des ex­temen Faktors und unter Hinzuftigung von weiteren Verbrauchsfaktoren die Lei­stungsbereitschaft des Untemehmens in Anspruch genommen wird. Wahrend die Vorkombination einen groBen Teil der gesamten Kosten verursacht, werden erst durch die Durchftihrung der Endkombination Erlose erzielt. Ihr Ausloser ist die durch das Auftreten des extemen Faktors gekennzeichnete Nachfrage, die typi­scherweise recht kurzfristig befriedigt werden solI. Die wahrend eines bestimm­ten Zeitraums zu erstellende Leistungsmenge laBt sich nur begrenzt planen, z.B. durch Terminvereinbarungen oder Vorbestellungen, sie ist vielmehr durch ein produktabhangiges AusmaB an Unsicherheit gekennzeichnet.

Zur Bewl:iltigung von kurzfristig auftretenden Spitzenbelastungen oder auch un­vorhergesehenen Einbruchen bei der N achfrage nach Dienstleistungen lassen sich die von GUTENBERG vorgeschlagenen Anpassungsma'pnahmen (vgL Abschnitt 3.1.2) wie folgt einsetzen:

• Eine zeitliche Anpassung bei der Dienstleistungsproduktion liegt z.B. dann vor, wenn die Offnungszeiten, wahrend derer die Leistungsbereitschaft den potentiellen Abnehmem angeboten wird, erhOht oder reduziert werden. Diese MaBnahme ist vor allem geeignet, um ein gleichmaBig verteiltes, verandertes Gesamtvolumen an N achfrage zu befriedigen.

• Kumulieren sich die Nachfrageanderungen hingegen in bestimmten Zeitinter­vallen, z.B. in der Mittagszeit, so kommt die quantitative Anpassung zum Ein­satz. Dabei wird die Anzahl der in der betroffenen Zeit bereitgehaltenen Be­handlungs- bzw. Abfertigungsschalter sowie das zugehorige Personal variiert.

• Auch eine intensitiitsmii'pige Anpassung ist bei der Dienstleistungsproduktion prinzipiell moglich, indem den Arbeitnehmem in Abhangigkeit von der Nach­frage eine groBere oder auch geringere Arbeitsleistung pro Zeiteinheit abver­langt wird. Eine derartige Arbeitsverdichtung bzw. -entlastung ist jedoch zum einen schwer meBbar, zum anderen geht sie haufig mit Qualitatsveranderungen einher, so daB die erstellte Dienstleistung nicht mehr mit der zuvor erzeugten identisch ist.

In Abhangigkeit von dem Einsatz der drei Anpassungsformen lassen sich die Ausbringungsmenge an Dienstleistungen einer bestimmten Art und die daftir be­notigten Faktoreinsatzmengen sowie die zugehOrigen Kostenverlaufe prinzipiell analog zu der Produktion von Sachgtitem darstellen.

Page 293: Produktionstheorie ||

282 5. Neuere Entwicklungen der Produktionstheorie

Sind die auftretenden Nachfrageveranderungen nicht mehr nur von kurzfristiger Natur, so ist - wie oben beschrieben - eine langerfristig wirksame Veranderung der Vorkombination vorzunehmen, urn sich wiederum an die veranderten Anfor­derungen anzupassen.

Bei genauerer Betrachtung des Dienstleistungsprozesses ergibt sich, daB sich bei der Ausgestaltung der Vorkombination zwei zeitlich und hierarchisch aufeinan­der aufbauende Stufen unterscheiden lassen: Zum einen ist langfristig das Ge­schiiftsfeld zu definieren; die Raumlichkeiten und gegebenenfalls die ffir die Er­bringung der Dienstleistung erforderlichen Betriebsmittel sind bereitzustellen. 1m

Rahmen dieser Vorentscheidungen sind mittelfristig Konkretisierungen vorzu­nehmen, durch die insbesondere immer wieder eine Ausrichtung des Dienstlei­stungsangebots auf die Erwartungen der potentiellen Kunden erfolgt.

In Abbildung 100 sind einige Beispiele ffir diese beiden Stufen der Vorkombina­tion sowie die jeweils dazugehOrige Endkombination angegeben.

Vorkombination Dienstieistung -langfristig Endkombination

- mittelfristig

OPNV, Giiterfemverkehr Betrieb Fahrgast, Auf trag Fahrplanangebot

Kino, Theater, Museum Riiume Besucher ProJUllllllDangebot

Ant Praxis Behandlung Sprechzeiten

Handel Riiume, Warenangebot

Kaufakt Offnungszeiten

Rechts-, Steuerberatung Betrieb Klient

Angebot

Friseur etc. Betrieb Haarschnitt etc. Offnung

Kreditvergabe, Riiume Vertrag

Versicherung Produktpalette

Unterricht Gebiiude Einschreibung, Teilnahme Stundenplan

Restaurant Riiume, Speisekarte

Gast Offnungszeiten

Abb. 100: Beispiele fUr Vor- und Endkombinationen

So muG z.B. ein Untemehmen des offentlichen Personennahverkehrs langfristig seine Betriebsbereitschaft aufbauen, d.h. Fahrzeuge, Haltestellen, Betriebshofe,

Page 294: Produktionstheorie ||

5.3 Die Theorie der Dienstleistungsproduktion 283

Schienenstrange, Verkaufseinrichtungen, fahrendes und stationares Personal usw. entsprechend der geplanten Inanspruchnahme vorhalten. Die mittelfristige Kon­kretisierung der Vorkombination bezieht sich auf das wahrend eines bestimmten Giiltigkeitszeitraums gegebene Fahrplanangebot, das in bezug auf das Liniennetz, die Taktfrequenz usw. ausgestaltet wird. Beides zusammen ergibt die angebotene Betriebsleistung, die erst durch die Endkombination in Form der Inanspruchnah­me durch einen Fahrgast in eine Marktleistung umgewandelt wird und zu Erlosen ftihrt.

Bei verschiedenen branchenspezifischen Untersuchungen hat sich gezeigt, daB eine Anwendung der urspriinglich fiir die Sachgliterproduktion entwickelten Pro­duktionsfunktionen auch im Dienstleistungsbereich zur Beschreibung der Vor­kombination oder der Endkombination durchaus moglich ist (vgl. hierzu CORSTEN [1997b], S. 188 - 248).

Anzustreben ist jedoch, tiber derartige einzelfallspezifische Anwendungen hinaus eine allgemeine Produktionstheorie zu formulieren, die - analog zu dem in Ab­schnitt 5.3.3.1 dargestellten Produktionsfaktorsystem - sowohl die Dienstlei­stungsproduktion als auch die Herstellung von Sachglitem mit allen ihren Aus­pragungen und Dberschneidungen umfaBt. Ein Ansatzpunkt hierflir ist die Auf­spaltung eines komplexen Produktionsvorgangs in einzelne Teilprozesse, die auf Basis ihrer speziellen, materiellen und immateriellen Einsatzfaktoren und Ergeb­nisse jeweils problemadaquat beschrleben werden. Die konsistente Formulierung einer so1chen prozeBorientierten Produktionstheorie ist eine aktuelle Aufgabe der produktionswirtschaftlichen Forschung; Ansatze hierzu gibt bereits BEHRENS [1998].

5.3.3.3 Das Produkt der Dienstleistungsproduktion

Das Produkt der Dienstleistungsproduktion wurde oben bereits als die beabsich­tigte Veranderung oder Erhaltung von bestimmten Eigenschaften des extemen Faktors charakterisiert. Bei der exakten Beschreibung des Outputs eines Dienst­leistungsprozesses stellt sich jedoch haufig das Problem, daB sich weder die er­zeugte Menge noch ihre Qualitat eindeutig - d.h. ohne subjektive Einfllisse und mit einem quantitativen MaBstab - feststellen laBt. Haufig hangt der Output nicht nur von der Art der Durchftihrung der Dienstleistungsproduktion durch den An­bieter, sondem auch von dem realisierten AusmaB an Interaktion auf seiten des Nachfragers abo

Page 295: Produktionstheorie ||

284 5. Neuere Entwicklungen der Produktionstheorie

Ein typisches Beispiel daftir ist die Leistung eines Arztes, die letztlich in dem Beitrag der Behandlung zur Gesundung seines Patienten besteht. Dieser Beitrag ist jedoch einerseits kaum exakt zu erfassen; er hiingt zudem nicht nur von den Anstrengungen und dem Kannen des Arztes, sondem auch von dem jeweiligen Zustand und dem VerhaIten des Patienten sowohl wahrend aIs auch nach der Konsultation abo Der iibliche MaBstab zur Messung der arztlichen Leistung sind die in der Gebiihrenordnung festgeschriebenen Tatigkeiten und Leistungsmerk­male, die jedoch nur bedingt in einer eindeutigen Relation zu der eigentlichen Leistung stehen.

Von besonderer Bedeutung bei der outputorientierten Betrachtung der Dienstlei­stungsproduktion ist somit die Qualitiit einer Dienstleistung, die sich nicht nur schwer objektiv bestimmen laBt, sondem die dariiber hinaus hiiufig erst im nach­hinein, d.h. nach der Durchfiihrung des Leistungsprozesses, offenbar wird. Fiir den Nachfrager einer Dienstleistung stellt die Dienstleistungsqualitiit eine Ver­trauenseigenschaft dar, die sich z.B. aus dem Ruf des Anbieters oder bisherigen guten Erfahrungen ableiten laBt. Fiir den Anbieter einer Dienstleistung ist es da­her von Bedeutung, daB er von seinen Kunden Riickkopplungsinformationen iiber die von diesen wahrgenommene Qualitiit erhiilt, urn einerseits Ansatzpunkte fiir eine magliche Verbesserung seines Leistungsprozesses aufzudecken, andererseits durch das Angebot von KompensationsmaBnahmen zu verhindem, daB durch un­zufriedene Kunden eine Beeintriichtigung seiner Reputation erfolgt.

Ais Instrument zur Beschreibung des Outputs an Dienstleistungen kannte sich die in Abschnitt 5.2 dargestellte Theorie der unscharfen Mengen als geeignet erwei­sen. Dabei lassen sich sowohl der Umfang bzw. die Menge einer Dienstleistung aIs auch ihre objektive bzw. subjektiv wahrgenommene QuaIitiit als unscharfe Eigenschaften modellieren. Die Dienstleistung kann dann aIs Vektor aus den ver­schiedenen relevanten Eigenschaften beschrieben werden, in dem sich gegebe­nenfaIls auch ihre Beziehung zu komplementaren Sachgiitem erfassen laBt.

Wie bereits in Abschnitt 5.3.1 herausgearbeitet wurde, treten Dienstleistungen nicht nur in reiner Form, sondem vielfach in einer solchen Verbindung mit Sach­giitern auf, daB weder die eine noch die andere Komponente isoliert produziert und abgesetzt werden kann (vgl. nochmaIs ENGEUIARDT et aI. [1993]). Ein typi­sches Beispiel dafiir sind erklarungsbediirftige Giiter, z.B. Investitionsgiiter, bei denen die materielle Komponente notwendig der Erganzung durch Beratung, En­gineeringleistungen usw. bedarf. Die einzelne Dienstleistung ist dabei aIs Be­standteil eines Kuppelproduktbiindels aus materiellen und immateriellen Leistun-

Page 296: Produktionstheorie ||

5.3 Die Theorie der Dienstleistungsproduktion 285

gen aufzufassen, in dem sie mit festen oder variablen Anteilen vertreten ist. Die outputorientierte Analyse der Dienstleistungsproduktion muB die innerbetriebli­chen Einflu8gro8en untersuchen, von denen der Umfang der Erstellung einer ein­zelnen Dienstleistung oder eines Leistungsbiindels aus Sach- und Dienstleistun­gen sowie das AusmaB der Realisierung bestimmter Eigenschaften des Outputs abhangt.

5.3.4 Beurteilung der Theorie der Dienstleistungsproduktion

Die Analyse der Produktion von Dienstleistungen aus unterschiedlichen Blick­winkeln hat zu folgenden Ergebnissen gefUhrt (vgl. auch CORSTEN [1988b], S. 86):

• Aufgrund der Schwierigkeiten bei der Abgrenzung von Sachgiiter- und Dienstleistungsproduktion ist es sinnvoll, ein allgemeines Produktionsfaktor­system einzufiihren, mit dem beliebige Auspdigungen der Produktion ange­messen erfaBt werden konnen.

• Der Produktionsproze8 der Dienstleistungsproduktion last sich prinzipiell mit den aus der Sachgiiterproduktion bekannten Produktionsfunktionen beschrei­ben. Auch hier ist eine integrierte Sichtweise von Sachgiiter- und Dienstlei­stungsproduktion anzustreben. Aufgrund der Abhangigkeit yom Auftreten des extemen Faktors verlagert sich der Schwerpunkt der Planungsaufgaben von der kurzfristigen auf die mittel- und langfristige Ebene.

• Auf der Outputseite der Dienstleistungsproduktion bestehen die wesentlichen Probleme in der Bestimmung der Quantitiit und der Qualitat einer Dienstlei­stung sowie in der haufigen Kopplung an materielle Giiter. Diese unscharfen Eigenschaften lassen sich mit Hilfe der unscharfen Mengenlehre erfassen.

Insgesamt la8t sich feststellen, daB die Theorie der Dienstleistungsproduktion zwar in den letzten Jahren erhebliche Fortschritte in ganz verschiedenen Berei­chen gemacht, jedoch die dort bestehenden Probleme bei weitem noch nicht in dem MaBe durchdrungen hat, bei es bei der Sachgiiterproduktion der Fall ist. Aufgrund der iiberwiegenden Gemeinsamkeiten der beiden Bereiche wird immer wieder die Forderung erhoben, eine allgemeine Produktionswirtschaftslehre zu entwickeln, die samtliche Erscheinungsformen der realen Produktion abdeckt (vgl. z.B. BODE / ZELEWSKI [1992], S. 603).

Page 297: Produktionstheorie ||

287

6. Zusammenfassung und Ausblick

In den vorangegangenen Kapiteln wurde ein systematischer Uberblick tiber die wesentlichen Entwicklungslinien auf dem Gebiet der betriebswirtschaftlichen Produktionstheorie gegeben. Ausgehend von den volkswirtschaftlichen Wurzeln dieser Teildisziplin, auf denen die im zweiten Kapitel dargestellten ertragsge­setzlichen Produktionsfunktionen beruhen, wurden im dritten bis ftinften Kapitel die wichtigsten primar betriebswirtschaftlich orientierten Ansatze der Produk­tionstheorie in chronologischer Reihenfolge dargestellt. Dabei wurde ein Bogen gespannt von den bahnbrechenden Arbeiten GUTENBERGS Anfang der ftinfziger Jahre bis hin zu den aktuellen Problemen im Bereich der produktionstheoreti­schen Forschung.

Der Schwerpunkt der Ausftihrungen liegt auf der Produktivitiitsbeziehung, die einen wesentlichen Teil des betrieblichen Umsatzprozesses bestimmt. Dabei wird die Produktion als Kombinations- und TransformationsprozeB aufgefaBt, durch den eine Umwandlung von Produktionsfaktoren bzw. Inputgtitem in Produkte bzw. Outputgtiter erfolgt. Die dargestellten produktionstheoretischen Ansatze bilden diese Produktivitatsbeziehung aus unterschiedlichen Blickwinkeln abo Sie unterscheiden sich insbesondere hinsichtlich folgender Aspekte:

• Aggregationsniveau • Erfassung technischer Zusammenhange • Heterogenitat der Produktionsfaktoren • Komplexitat des Produktionsprozesses • Anzahl und Art der erzeugten Gtiter • Behandlung des Zeitaspekts • Umfang der Entscheidungen

Trotz zum Teil recht unterschiedlicher Vorgehensweisen und Modellierungsan­satze laBt sich die Produktionstheorie im wesentlichen als ein einheitliches, kon­sistentes Gedankengebaude darstellen. Dabei kommen immer wieder bestimmte Prinzipien und Mechanismen zur Anwendung, wie Effizienztiberlegungen, Mar­ginalanalysen und ertragsgesetzliche Verlaufe.

Die BerUcksichtigung von Umweltgtitem und anderen Umweltschutzaspekten in produktionstheoretischen Modellen stellt einen Schwerpunkt der Ausfiihrungen dar. Die wesentlichen Erkenntnisse hinsichtlich der Einbeziehung derartiger Sachverhalte konnen anhand der linearen Aktivitatsanalyse und der GUTENBERG­Produktionsfunktion gewonnen werden: Die Steuerung der Inanspruchnahme von

Page 298: Produktionstheorie ||

288 6. ZusammenJassung und Ausblick

knappen Umweltgiitem erfordert keinen neuen theoretischen Ansatz, sondem ist durch eine entsprechende Erweiterung und Modiflkation der bekannten Modelle zu erreichen. Die Produktionstheorie erweist sich somit als hinreichend tragflihig, urn okonomische Entscheidungen auch hinsichtlich von Umweltgiitem und Um­weltschutzmaBnahmen zu unterstiitzen.

Die Produktionstheorie ist von fundamentaler Bedeutung als theoretische Basis der Produktionswirtschaft, auf der die starker an der betrleblichen Praxis ausge­richteten Teilbereiche aufbauen. So greifen die Kostenrechnung und auch das Controlling ffir ihre spezifischen Aufgaben vielfach explizit oder implizit auf das Mengengeriist zurUck, das die Produktionstheorie bereitstellt. Zahlreiche Ent­scheidungen des Produktionsmanagements, vor allem im Bereich der taktischen urid operativen Produktionsplanung und -steuerung, werden in produktionstheo­retischen Ansatzen behandelt. Als Beispiele seien die Stiicklistenauflosung als Anwendung der betrlebswirtschaftlichen Input/Output-Analyse und die Integra­tion von Ablaufentscheidungen im Rahmen der dynamischen Ansatze der Pro­duktionstheorie angefiihrt.

Die neueren Entwicklungen der Produktionstheorie fuhren zum Teil in andere Bereiche. Insbesondere wurde deutlich, daB auf dem Gebiet der Theorie der Dienstleistungsproduktion noch ein erheblicher Forschungsbedarf besteht. Ein Endziel produktionstheoretischer Forschung ist die Herleitung eines allgemeinen Ansatzes, der die verschiedenen und oft untrennbaren Auspragungen materieller und immaterieller Guter sowohl auf der Input- als auch auf der Outputseite der Produktion sowie die zugehorigen Transformationsprozesse sinnvoll zu integrie­ren vermag.

Page 299: Produktionstheorie ||

289

Literaturverzeichnis

Adam, D.: Produktions- und Kostentheorie bei Beschiiftigungsgradanderungen, Mohr I Siebeck, Tiibingen 1974

Adam, D.: Produktionsmanagement, Gabler-Verlag, Wiesbaden, 7. Aufl. 1993a

Adam, D. (Hrsg.): Umweltmanagement in der Produktion, Gabler-Verlag, Wiesbaden 1993b

Albach, H.: Produktionsplanung auf der Grundlage technischer Verbrauchsfunktionen, in: Veroffentlichungen der Arbeitsgemeinschaft fUr Forschung des Landes Nord­rhein-Westfalen, Heft 105, KOin I Opladen 1962a, S. 45 - 109

Albach, H.: Zur Verbindung von Produktionstheorie und Investitionstheorie, in: Koch, H. (Hrsg.), Zur Theorie der Unternehmung - Festschrift zum 65. Geburtstag von Erich Gutenberg, Gabler-Verlag, Wiesbaden 1962b, S. 137 - 203

Albach, H.: Average and Best-Practice Production Functions in German Industry, in: Journal of Industrial Economics 29,1980, S. 55 -70

Albach, H. (Hrsg.): Zur Theorie der Unternehmung, Springer-Verlag, Berlin I Heidel­berg I New York 1989a

Albach, H.: Dienstleistungsunternehmen in Deutschland, in: Zeitschrift fur Betriebs­wirtschaft 59, 1989b, S. 397 - 420

Albach, H., Luhmer, A., Steven, M. (Hrsg.), Die Theorie der Unternehmung in Wissen­schaft und Praxis, Springer-Verlag, Berlin I Heidelberg I New York 1998

Altenburger, O. A.: Potentialfaktoren als derivative Produktionsfaktoren der Dienstlei­stungsproduktion, in: Zeitschrift fur Betriebswirtschaft 49, 1979, S. 863 - 872

Altenburger, O. A.: Ansatze zu einer Produktions- und Kostentheorie der Dienstleistun­gen, Duncker & Humblot, Berlin 1980

Altrogge, G.: Zu Kostenfunktionen bei kombinierter Anpassung, in: Zeitschrift fur Be­triebswirtschaft 51, 1981, S. 412 - 417

Arrow, K. J., Chenery, H. B., Minhas, B. S., Solow, R. M.: Capital-Labour-Substitution and Economic Efficiency, in: The Review of Economics and Statistics 43, 1961, S. 225 - 250

Bea, F. X., Kotzle, A.: Grundkonzeptionen der betriebswirtschaftlichen Produktions­theorie, in: Wirtschaftswissenschaftliches Studium 4, 1975a, S. 509 - 513

Bea, F. X., Kotzle, A.: Ansatze fur eine Weiterentwicklung der betriebswirtschaftlichen Produktionstheorie, in: Wirtschaftswissenschaftliches Studium 4, 1975b, S. 565 -570

Beckmann, M. J.: Aktivitatsanalyse der Produktion und des Wirtschaftens, in: Zeit­schrift fur die gesamte Staatswissenschaft 109, 1953, S. 629 - 644

Beckmann, M. J.: Grundbegriffe der Produktionstheorie vom Standpunkt der Aktivitats­analyse, in: Weltwirtschaftliches Archiv 75, 1955, S, 50 - 58

Page 300: Produktionstheorie ||

290 Literaturverzeichnis

Behrens, S.: Grundlagen der prozeBorientierten Produktionstheorie, in: Albach, H., Luhmer, A., Steven, M. (Hrsg.), Die Theorie der Unternehmung in Wissenschaft und Praxis, Springer-Verlag, Berlin 1 Heidelberg 1 New York 1998, in Vorberei­tung

Bensoussan, A., Hurst, G., Naslund, B.: Management Applications of Modem Control Theory, North Holland, Amsterdam 1974

Berekoven, L.: Der Dienstleistungsbetrieb, Gabler-Verlag, Wiesbaden 1974

Beuermann, G.: Produktionsfaktoren, in: Kern, W., SchrOder, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1494 - 1505

Bloech, J.: Produktionsfaktoren, in: Wittmann, W. u.a. (Hrsg.), Handworterbuch der Betriebswirtschaftslehre, Schaffer-Poeschel, Stuttgart, 5. Aufl. 1993/4, Sp. 1000 -1010

Bloech, J., Lucke, W.: Produktionswirtschaft, Gustav Fischer Verlag, Stuttgart 1 New York 1982

Bloech, J., Lucke, W.: Fertigungswirtschaft, in: Bea, F. X., Dichtl, E., Schweitzer, M. (Hrsg.), Allgemeine Betriebswirtschaftslehre, Band 3: LeistungsprozeB, Gustav Fischer Verlag, Stuttgart 1 Jena, 6. Aufl. 1994, S. 77 - 130

Bloech, J., Bogaschewski, R, Gotze, U., Roland, F.: Einfiihrung in die Produktion, Phy­sica-Verlag, Heidelberg, 2. Aufl. 1993

Bode, J.: Die Produktion von Information - Eine produktionstheoretische Analyse der betrieblichen Informationserzeugung, Gabler-Verlag, Wiesbaden 1993

Bode, J.: Eine unscharfe Produktionsfunktion der Unternehmung, in: Zeitschrift fUr Be­triebswirtschaft 64, 1994, S. 465 - 492

Bode, J., Zelewski, S.: Die Produktion von Dienstleistungen - Ansatze zu einer Pro­duktionswirtschaftslehre der Dienstleistungsunternehmen?, in: Betriebswirt­schaftliche Forschung und Praxis 44, 1992, S. 594 - 607

Bogaschewsky, R, Roland, F.: Anpassungsprozesse mit Intensitatssplitting bei Guten­berg-Produktionsfunktionen, in: Zeitschrift fUr Betriebswirtschaft 66, 1996, S. 49 -75

Bogaschewsky, R, Sierke, B.: Optimale Aggregatkombination bei zeitlich­intensitatsmiiBiger Anpassung und bei Kosten der Inbetriebnahme, in: Zeitschrift fUr Betriebswirtschaft 57, 1987, S. 978 - 1000

Bogaschewsky, R: Natiirliche Umwelt und Produktion - Interdependenzen und betrieb­liche Anpassungsstrategien, Gabler-Verlag, Wiesbaden 1995

Bohr, K.: Zur Produktionstheorie der Mehrproduktunternehmung, Westdeutscher Ver­lag, Koln 1 Opladen 1967

Bohr, K.: Produktionsfaktorsysteme, in: Kern, W., (Hrsg.), Handworterbuch der Pro­duktionswirtschaft, Poeschel Verlag, Stuttgart 1979, Sp. 1481 - 1493

Page 301: Produktionstheorie ||

Literaturverzeichnis 291

Bohr, K.: Produktions- und Kostenfunktion, in: Wirtschaftswissenschaftliches Studium 11, 1982, S. 456 - 462

Borts, G. H., Mishan, E. J.: Exploring the "Uneconomic Region" of the Production Function, in: The Review of Economic Studies 29, 1962, S. 300 - 312

Botta, V.: Betriebswirtschaftliche Produktionsfunktionen - Ein Uberblick, in: Wirt­schaftswissenschaftliches Studium 15, 1986, S. 113 - 119

Breit, C.: Lern- und Erfahrungseffekte in der Produktionstheorie, BGI-Verlag, Munchen 1985

Breyer, F.: Produktions- und Kostenfunktionen fUr gemeinwirtschaftliche Unternehmen, in: Zeitschrift fUr offentliche und gemeinwirtschaftliche Unternehmen 10, 1987, S. 1 - 11

Bucher, K.: Das Gesetz der Massenproduktion, in: Zeitschrift fur die gesamte Staatswis­senschaft 66, 1910, S. 429 - 444

Busse von Colbe, W., LaBmann, G.: Betriebswirtschaftstheorie, Band 1: Grundlagen, Produktions- und Kostentheorie, Springer-Verlag, Berlin 1 Heidelberg 1 New York, 5. Aufl. 1991

Buttler, G., Stegner, E.: Industrielle Dienstleistungen, in: Zeitschrift fur betriebswirt­schaftliche Forschung 42,1990, S. 931 - 946

Chenery, H. B.: Engineering Production Functions, in: The Quarterly Journal of Eco­nomics 63,1949, S. 507 - 531

Cobb, C. W., Douglas, P. H.: A Theory of Production, in: American Economic Review 18, 1928, Supplement, S. 139 - 165

Corsten, H.: Zum Problem der Mehrstufigkeit der Dienstleistungsproduktion, in: Jahr­buch der Absatz- und Verbrauchsforschung 30, 1984, S. 253 - 272

Corsten, H.: Die Produktion von Dienstleistungen, Berlin 1985

Corsten, H.: Produktionsfaktorsysteme, in: Das Wirtschaftsstudiurn 15, 1986, S. 173 -178

Corsten, H.: Betriebswirtschaftslehre der Dienstleistungsunternehmen, Oldenbourg, Berlin 1 Munchen 1988a

Corsten, H.: Dienstleistungen in produktionstheoretischer Interpretation, in: Das Wirt­schaftsstudium 17, 1988b, S. 81 - 98

Corsten, H.: Dienstleistungsproduktion, in: Wittmann, W. u.a. (Hrsg.), Handworterbuch der Betriebswirtschaft, 3 Bd., Schaffer-Poeschel, Stuttgart, 5. Aufl. 1993/4, Sp. 765 -776

Corsten, H.: Dienstleistungsproduktion, in: Kern, W., SchrOder, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 339 - 352

Corsten, H.: ProduktioDswirtschaft, Oldenbourg, Munchen, 7. Aufl. 1997a

Corsten, H.: Dienstleistungsmanagement, Oldenbourg, MuncheD, 3. Aufl. 1997b

Page 302: Produktionstheorie ||

292 Literaturverzeichnis

Dan{6, S.: A Note on Factor Substitution in Industrial Production Processes, in: Unter­nehmensforschung 9, 1965, S. 164 - 168

Dan{6, S.: Industrial Production Models, Springer-Verlag, Berlin I Heidelberg I New York 1966

Dantzig, G. B.: Lineare Programmierung und Erweiterungen, Springer-Verlag, Berlin I Heidelberg I New York 1966

Debreu, G.: Theory of Value, New York, 1. Aufl. 1959,4. Aufl. 1971

Dellmann, K.: Betriebswirtschaftliche Produktions- und Kostentheorie, Gabler-Verlag, Wiesbaden 1980

Dellmann, K., Nastanski, L.: Kostenminimale Produktionsplanung bei rein intensiUits­miiBiger Anpassung mit differenzierten Intensitatsgraden, in: Zeitschrift fUr Be­triebswirtschaft 39, 1969, S. 239 - 286

Dinkelbach, W.: Sensitivitatsanalysen und parametrische Programmierung, Springer­Verlag, Berlin I Heidelberg I New York 1969

Dinkelbach, W.: Elemente einer umweltorientierten betriebswirtschaftlichen Produk tions- und Kostentheorie auf der Grundlage von Leontief-Technologien, in: OR­Proceedings 1989, Springer-Verlag, Berlin I Heidelberg I New York 1990, S. 60-70

Dinkelbach, W.: Effiziente Produktionen in umweltorientierten Leontief-Technologien, in: Fandel, G., Gehring, F. (Hrsg.), Operations Research - Beitrage zur quantitati­ven Wirtschaftsforschung, Springer-Verlag, Berlin I Heidelberg I New York 1991, S. 361 - 375

Dinkelbach, W.: Okologische Aspekte in der Produktionstheorie, in: Kern, W., Schro­der, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaf­fer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1338 - 1346

Dinkelbach, W., Dyckhoff, H.: Anmerkungen zu "Ansatze einer Theorie der Gutenberg­Produktionsfunktion", in: Zeitschrift fUr Betriebswirtschaft 64, 1994, S. 1513 -1523

Dinkelbach, W., Piro, A.: Entsorgung und Recycling in der betriebswirtschaftlichen Produktions- und Kostentheorie: Leontief-Technologien, in: Das Wirtschaftstudi­urn 18, 1989, S. 399 - 405 u. 474 - 480

Dinkelbach, W., Piro, A.: Entsorgung und Recycling in der betriebswirtschaftlichen Produktions- und Kostentheorie: Gutenberg-Technologien, in: Das Wirtschafts­studium 19, 1990, S. 640 - 645, 700 -705

Dinkelbach, W., Rosenberg, 0.: Erfolgs- und umweltorientierte Produktionstheorie, Springer-Verlag, Berlin I Heidelberg I New York 1994

Dyckhoff, H.: Betriebliche Produktion, Springer-Verlag, Berlin I Heidelberg I New York, 2. Aufl. 1994

Dyckhoff, H.: Grundziige der Produktionswirtschaft, Springer-Verlag, Berlin I Heidel­berg I New York 1995

Page 303: Produktionstheorie ||

Literaturverzeichnis 293

Dyckhoff, H.: Theoretische Grundlagen einer umweltorientierten Produktionswirtschaft, in: Wagner, G. R. (Hrsg.), Betriebswirtschaft und Umweltschutz, Schaffer­Poeschel Verlag, Stuttgart 1993, S. 81 - 105

Dyckhoff, H.: Aktivitatsanalyse, in: Wittmann, W. u.a. (Hrsg.), Handworterbuch der Betriebswirtschaftslehre, Schaffer-Poeschel Verlag, Stuttgart,S. Aufl. 1993/4, Sp. 57 -68

Eichhorn, W.: Deduktion der Ertragsgesetze aus Pramissen, in: Zeitschrift flir National­okonomie 28, 1968a, S. 191 - 205

Eichhorn, W.: Diminishing Returns and Linear Homogeneity: Final Comment, in: The American Economic Review 58, 1968b, S. 150 - 162

Eichhorn, W.: Theorie der homogenen Produktionsfunktion, Springer-Verlag, Berlin 1 Heidelberg 1 New York 1970

Eichhorn, W.: Produktionskorrespondenzen, in: Wittmann, W. et al. (Hrsg.), Handwor­terbuch der Betriebswirtschaft, Schaffer-Poeschel Verlag, Stuttgart,S. Aufl. 1993/4, Sp. 3443 - 3450

Eichhorn, W., Muller, U.: Uber homogene, spezielllinear-homogene Produktionsfunk­tionen und das Ertragsgesetz, in: Weltwirtschaftliches Archiv 100, 1968, S. 290 -305

Ellinger, T., Haupt, R.: Produktions- und Kostentheorie, Poeschel Verlag, Stuttgart, 3. Aufl.1996

Engelhardt, W. E., Kleinaltenkamp, M., Reckenfelderbaumer, M.: Leistungsbundel als Absatzobjekte, in: Zeitschrift flir betriebswirtschaftliche Forschung 45, 1993, S. 395 - 426

Enos, J. L., Pearl, D. J.: Engineering Production Functions and Technological Progress, in: The Journal of Industrial Economics 24, 1975, S. 55 - 72

Fare, R., Grosskopf, S., Lovell, C. A. K.: Production Frontiers, Cambridge, Mass. 1994

Fandel, G.: Zum Stand der betriebswirtschaftlichen Theorie der Produktion, in: Zeit­schrift flir Betriebswirtschaft 50, 1980, S. 86 - 111

Fandel, G.: Aktivitatsanalyse der Produktionsplanung und -steuerung, in: Kistner, K.-P., Schmidt, R. (Hrsg.), Unternehmensdynamik, Gabler-Verlag, Wiesbaden 1991, S. 163 - 181

Fandel, G.: Produktion I: Produktions- und Kostentheorie, Springer-Verlag, Berlin 1 Heidelberg 1 New York,S. Aufl. 1996

Fandel, G.: Produktionstheorie, dynamische, in: Kern, W., SchrOder, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1557 - 1569

Fandel, G., Dyckhoff, H., Reese, J. (Hrsg.): Essays on Production Theory and Planning, Springer-Verlag, Berlin 1 Heidelberg 1 New York 1988

Feichtinger, G., Kistner, K.-P., Luhmer, A.: Ein dynamisches Modell des Intensitats­splittings, in: Zeitschrift flir Betriebswirtschaft 58, 1988, S. 1242 - 1258

Page 304: Produktionstheorie ||

294 Literaturverzeichnis

Fischer, K.-H.: Empirische Anwendungen der Produktionstheorie, in: Zeitschrift fUr Betriebswirtschaft 50, 1980, S. 314 - 335

Forstner, K.: Betriebs- und volkswirtschaftliche Produktionsfunktionen, in: Zeitschrift fUr Betriebswirtschaft 32, 1962, S. 264 - 282

Forstner, K., Henn, R.: Dynamische Produktionstheorie und lineare Programmierung, Hain, Meisenheim I Glan, 2. Aufl. 1970

Fourasti6, J.: Le grand espoir du xxe siecle, Paris 1949

Frisch, H.: Die CES-Funktion, in: Zeitschrift fUr Nationalokonomie 24, 1964, S. 419 -439

Frisch, R.: Theory of Production, Reidel, Dordrecht 1965

Frohn, J.: Untersuchungen zur CES-Produktionsfunktion, Physica-Verlag, Wtirzburg 1970

Frohn, J., Krengel, R., Kuhbier, P., Oppenlander, K. H., Uhlmann, L.: Der technische Fortschritt in der Industrie, Duncker & Humblot, Berlin 1973

Goppl, H.: Die neuere Entwicklung der Produktions- und Kostentheorie, in: Betriebs­wirtschaftliche Forschung und Praxis 20, 1968, S. 363 - 375

Gutenberg, E.: EinfUhrung in die Betriebswirtschaftslehre, Gabler-Verlag, Wiesbaden 1958, Nachdruck 1990

Gutenberg, E.: Grundlagen der Betriebswirtschaft, Erster Band: Die Produktion, Sprin­ger-Verlag, Berlin I Heidelberg I New York, 1. Aufl. 1951, 24. Aufl. 1983

Haupt, R.: Produktions- und kostentheoretische Anpassung an Beschaftigungsschwan­kungen, in: Das Wirtschaftsstudium 13, 1984, S. 393 - 398

Haupt, R.: Produktionstheorie und Ablaufmanagement, Poeschel Verlag, Stuttgart 1987

Haupt, R., Knobloch, T.: Kostentheoretische Anpassungsprozesse bei zeitvariablen Faktoreinsatzen, in: Zeitschrift fUr Betriebswirtschaft 59, 1989, S. 504 - 524

Heinen, E.: Das Kapital in der Produktions- und Kostentheorie, in: Zeitschrift fUr Be­triebswirtschaft 36, Erganzungsheft I11966, S. 53 - 63

Heinen, E.: Einige Bemerkungen zur betriebswirtschaftlichen Kostenlehre und zu den KosteneinfluBgroBen, in: Betriebswirtschaftliche Forschung und Praxis 22, 1970, S. 257 - 261

Heinen, E.: Betriebswirtschaftliche Kostenlehre, Gabler-Verlag, Wiesbaden, 1. Aufl. 1965, 6. Aufl. 1983

Heinen, E. (Hrsg.): Industriebetriebslehre, Gabler-Verlag, Wiesbaden, 8. Aufl. 1985

Heinen, E.: Produktions- und Kostentheorie, in: Jacob, H. (Hrsg.), Allgemeine Be­triebswirtschaftslehre, Gabler-Verlag, Wiesbaden, 5. Aufl. 1988, S. 209 - 299

Henzel, F.: Die Produktions- und Kostentheorie in kritischer Betrachtung, in: Zeitschrift fUr betriebswirtschaftliche Forschung 19, 1967, S. 313 - 328

Herrmann, K.: Zur Interpretation des Ertragsgesetzes, in: Zeitschrift fUr Betriebswirt­schaft 28, 1958a, S. 409 - 419

Page 305: Produktionstheorie ||

Literaturverzeichnis 295

Herrmann, K.: Zur Interpretation des Ertragsgesetzes (ll), in: Zeitschrift flir Betriebs­wirtschaft 28, 1958b, S. 485 - 499

Hettich, G. 0., Kupper, H.-U.: Produktions- und Kostentheorie der Unternehmung - eine Literaturtibersicht, in: Wirtschaftswissenschaftliches Studium 5, 1976, S. 35 - 40

Heyke, H.-E.: Aligemeines Ertragsgesetz und Massenwirkungsgesetz, in: Zeitschrift fUr Nationalokonomie 27,1967, S. 267 - 327

Hildenbrand, W.: Mathematische Grundlagen zur nichtlinearen Aktivitatsanalyse, in: Unternehmensforschung 10, 1966, S. 65 - 80

Hildenbrand, K., Hildenbrand, W.: Lineare okonomische Modelle, Springer-Verlag, Berlin I Heidelberg I New York 1975

Hoitsch, H.-J.: Produktionswirtschaft, Verlag Vahlen, Munchen, 2. Aufl. 1993

Houtmann, H.: Elemente einer umweltorientierten Produktionstheorie, Gabler-Verlag, Wiesbaden 1998

Thde, G.-B.: Lernprozesse in der betriebswirtschaftlichen Produktionstheorie, in: Zeit­schrift flir Betriebswirtschaft 40, 1970, S. 451 - 468

Jacob, H.: Zur neueren Diskussion urn das Ertragsgesetz, in: Zeitschrift flir betriebswirt­schaftliche Forschung n. F. 9, 1957, S. 598 - 618

Jacob, H.: Das Ertragsgesetz in der industriellen Produktion, in: Zeitschrift ffir Be­triebswirtschaft 30, 1960, S. 455 - 469

Jacob, H.: Produktionsplanung und Kostentheorie, in: Koch, H. (Hrsg.), Zur Theorie der Unternehmung, Gabler-Verlag, Wiesbaden 1962, S. 205 - 268

Jacob, H. (Hrsg.): Allgemeine Betriebswirtschaftslehre, Gabler-Verlag, Wiesbaden, 5. Aufl.1988

Jacobsen, S. E.: Production Correspondences, in: Econometrica 38,1970, S. 754 -771

Jahnke, B.: Betriebliches Recycling, Gabler-Verlag, Wiesbaden 1986

Jahnke, H.: Produktion bei Unsicherheit, Physica-Verlag, Heidelberg 1995

Johansen, L: Production Functions, North-Holland, Amsterdam 1972

Kahle, E.: Produktion, Oldenbourg Verlag, Munchen IWien 1980

Kalmbach, P.: Subsysteme: Eine vernachlassigte Anwendung der Input-Output-Analyse, in: Wirtschaftswissenschaftliches Studium 15, 1986, S. 189 - 194

Kampkotter, H.: Einzelwirtschaftliche Ansatze der Produktionstheorie, Athenaeum, Konigstein (Ts.) 1981

Karrenberg, R., Scheer, A.-W.: Ableitung des kostenminimalen Einsatzes von Aggre­gaten zur Vorbereitung der Optimierung simultaner Planungsprozesse, in: Zeit­schrift flir Betriebswirtschaft 40, 1970, S. 689 - 706

Keilus, M.: Produktions- und kostentheoretische Grundlagen einer Umweltplankosten­rechnung, Verlag Josef Eul, Bergisch Gladbach I KOln 1993

Kern, W.: Der Impulsbezug dynamischer Fragestellungen in der Betriebswirtschaftsleh­re, in: Zeitschrift flir Betriebswirtschaft 39, 1969, S. 343 - 368

Page 306: Produktionstheorie ||

296 Literaturverzeichnis

Kern, W.: Die Produktionswirtschaft als Erkenntnisbereich der Betriebswirtschaftslehre, in: Zeitschrift fUr betriebswirtschaftliche Forschung 28, 1976, S. 756 - 767

Kern, W. (Hrsg.): Handworterbuch der Produktionswirtschaft, Poeschel Verlag, Stutt­gart 1979

Kern, W.: Produktionswirtschaft, in: Kern, W. (Hrsg.), Handworterbuch der Produkti­onswirtschaft, Poeschel Verlag, Stuttgart 1979, Sp. 1647 - 1660

Kern, W.: Industrielle Produktionswirtschaft, Poeschel Verlag, Stuttgart, 5. Aufl. 1992

Kern, W.: Produktionswirtschaft: Objektbereich und Konzepte, in: Kern, W., Schroder, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer­Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1629 - 1642

Kern, W., Fallaschinski, K.: Betriebswirtschaftliche Produktionsfaktoren, in: Das Wirt­schaftsstudium 17/18, 1978n9, S. 148 -152 u. 5 - 8

Kern, W., Schroder, H.-H., Weber, J. (Hrsg.): Handworterbuch der Produktionswirt­schaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996

Kilger, W.: Produktions- und Kostentheorie, Gabler-Verlag, Wiesbaden 1958

Kistner, K.-P.: Aktivitatsanalyse, lineare Programmierung und neoklassische Produkti­onstheorie, in: Wirtschaftswissenschaftliches Studium 10, 1981, S. 145 - 151

Kistner, K.-P.: Zur Erfassung von Umwelteinflussen der Produktion in der linearen Ak­tivitatsanalyse, in: Wirtschaftswissenschaftliches Studium 12, 1983, S. 389 - 395

Kistner, K.-P.: Umweltschutz in der betrieblichen Produktionsplanung, in: Betriebswirt­schaftliche Forschung und Praxis 41, 1989, S. 30 - 50

Kistner, K.-P.: Zeitaspekte in der Produktionstheorie, in: Kistner, K.-P., Schmidt, R. (Hrsg.), Unternehmensdynamik, Gabler-Verlag, Wiesbaden 1991, S. 135 - 162

Kistner, K.-P.: Produktions- und Kostentheorie, Physica-Verlag, Heidelberg, 1. Aufl. 1981, 2. Aufl. 1993a

Kistner, K.-P.: Optimierungsmethoden, Physica-Verlag, Heidelberg, 2. Aufl. 1993b

Kistner, K.-P.: Produktionsfunktion, in: Wittmann, W. u.a. (Hrsg.), Handworterbuch der Betriebswirtschaft, Schaffer-Poeschel,S. Aufl. 1993c, Sp. 3415 - 3432

Kistner, K.-P.: Produktionstheorie, aktivitatsanalytische, in: Kern, W., SchrOder, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1545 - 1557

Kistner, K.-P., Luhmer, A.: Die Dualitat von Produktionsplanung und Kostenverrech­nung bei komplexen Produktionsstrukturen, in: Zeitschrift fUr Betriebswirtschaft 47, 1977, S. 767 - 786

Kistner, K.-P., Luhmer, A.: Zur Ermittlung der Kosten der Betriebsmittel in der stati­schen Produktionstheorie, Zeitschrift fUr Betriebswirtschaft 51, 1981, S. 165 - 179

Kistner, K.-P., Luhmer, A.: Ein dynamisches Modell des Betriebsmitteleinsatzes, Zeit­schrift fUr Betriebswirtschaft 58, 1988, S. 63 - 83

Kistner, K.-P., Schmidt, R. (Hrsg.): Unternehmensdynamik, Gabler-Verlag, Wiesbaden 1991

Page 307: Produktionstheorie ||

Literaturverzeichnis 297

Kistner, K.-P., Sonntag, S.: Ansatze einer Theorie der Gutenberg-Produktionsfunktion, in: Zeitschrift fUr Betriebswirtschaft 63, 1993, S. 1297 - 1329

Kistner, K.-P., Sonntag, S.: Ansatze einer Theorie der Gutenberg-Produktionsfunktion (Erwiderung), in: Zeitschrift fUr Betriebswirtschaft 64, 1994, S. 1525 - 1532

Kistner, K.-P., Steven, M.: Lineare Aktivitatsanalyse und Umweltschutz, in: Wagner, G. R. (Hrsg.), Betriebswirtschaft und Umweltschutz, Schaffer-Poeschel Verlag, Stuttgart 1993a, S. 106 - 125

Kistner, K.-P., Steven, M.: Produktionsplanung, Physica-Verlag, Heidelberg, 2. Aufl. 1993b

Kistner, K.-P., Steven, M.: Betriebswirtschaftslehre im Grundstudium, Band 1: Produk­tion, Absatz, Finanzierung, Physic a-Verlag, Heidelberg, 2. Aufl. 1996

Kistner, K.-P., Steven, M.: Betriebswirtschaftslehre im Grundstudium, Band 2: Buch­fUhrung, Kostenrechnung, Bilanzen, Physica-Verlag, Heidelberg, 1997

Klaus, J.: Produktions- und Kostentheorie, Stuttgart 1974

Kloock, J.: Betriebswirtschaftliche Input/Output-Modelle, Gabler-Verlag, Wiesbaden 1969a

Kloock, J.: Zur gegenwartigen Diskussion der Produktions- und Kostentheorie, in: Zeit­schrift fUr Betriebswirtschaft 39, Erganzungsheft I11969b, S. 49 - 82

Kloock, J.: Produktion, in: Vahlens Kompendium der Betriebswirtschaftslehre, Bd. 1, Munchen, 3. Aufl. 1993, S. 253 - 310

Kloock, J.: Kosten und KosteneinfluBgroBen, in: Kern, W., SchrOder, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 935 - 946

Knolmayer, G.: Systematisierungsversuche in der betriebswirtschaftlichen Produktions­theorie, in: Der osterreichische Betriebswirt 23, 1973, S. 87 - 101

Knolmayer, G.: Der EinfluB von Anpassungsmoglichkeiten auf die Isoquanten in Gu­tenberg-Produktionsmodellen, in: Zeitschrift fUr Betriebswirtschaft 53, 1983, S. 1122 - 1147

Koch, H.: Untersuchungen uber den Giiltigkeitsbereich des Gesetzes vom abnehmenden Ertragszuwachs, in: Zeitschrift fUr die gesamte Staatswissenschaft 106, 1950, S. 309 - 323

Koch, H. (Hrsg.): Zur Theorie der Unternehmung, Gabler-Verlag, Wiesbaden 1962

Koopmans, T. C. (Hrsg.): Activity Analysis of Production and Allocation, Yale Univer­sity Press, New Haven I London 1951

Koopmans, T. C.: Analysis of Production as an Efficient Combination of Activities, in: Koopmans, T. C.: Three Essays on the State of Economic Science, McGraw Hill, New York I Toronto I London 1957, S. 33 - 97

Koopmans, T. C.: Three Essays on the State of Economic Science, McGraw Hill, New York I Toronto I London 1957

Page 308: Produktionstheorie ||

298 Literaturverzeichnis

Krelle, W.: Produktionstheorie - Teil I der Preistheorie, Verlag Mohr I Siebeck, Tubin­gen, 2. Aufl. 1969

Kruschwitz, L.: Zur Programmplanung bei Kuppelproduktion, in: Zeitschrift fUr be­triebswirtschaftliche Forschung 26, 1974, S. 96 - 109

Kupper, H.-V.: Produktionsfunktionen, in: Wirtschaftswissenschaftliches Studium 5, 1976, S. 129 - 134

Kupper, H.-V.: Das Input-Output-Modell als allgemeiner Ansatz fUr die Produktions­funktion der Vnternehmung, in: Jahrbuch fUr Nationalokonomie und Statistik, Band 191 (1976n7), S. 492 - 519

Kupper, H.-V.: Dynamische Produktionsfunktion der Vnternehmung auf der Basis des Input-Output-Ansatzes, in: Zeitschrift fUr Betriebswirtschaft 49, 1979, S. 93 - 106

Kupper, H.-V.: Interdependenzen zwischen Produktionstheorie und der Organisation des Produktionsprozesses, Duncker & Humblot, Berlin 1980

Kupper, H.-V.: Structure, Applications and Limits of Dynamic Production Functions of the Firm Based on the Input-Output Approach, in: Engineering Costs and Pro­duction Economics 9,1985, S. 3 - 10

Kupper, H.-V.: Kostentheorie, in: Kern, W., Schroder, H.-H., Weber, J. (Hrsg.), Hand­worterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 959 - 971

LaBmann, G.: Die Produktionsfunktion und ihre Bedeutung fUr die betriebswirtschaftli­che Kostentheorie, Westdeutscher Verlag, Koln I Opladen 1958

LaBmann, G.: Kostenfunktionen und -verhalten, in: Kern, W., SchrOder, H.-H., Weber, J~ (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stutt­gart, 2. Aufl. 1996, Sp. 946 - 959

Leontieff, W.: The Structure of the American Economy, 1919 - 1939, New York 1951

Leontieff, W. (Hrsg.): Input-Output Economics, New York 1966

Lucke, W.: Produktions- und Kostentheorie, Physica-Verlag, Wurzburg, 3. Aufl. 1973

Luhmer, A.: Maschinelle Produktionsprozesse - Ein Ansatz dynamischer Produktions-und Kostentheorie, Westdeutscher Verlag, Opladen 1975

Luhmer, A.: Fixe und variable Abschreibungen und optimale Investitionsdauer, in: Zeit­schrift fUr Betriebswirtschaft 50, 1980, S. 879 - 930

Maleri, R.: Grundlagen der Dienstleistungsproduktion, Springer-Verlag, Berlin I Hei­delberg I New York, 1. Aufl. 1973,4. Aufl. 1997

Matthes, W.: Dynamische Einzelproduktionsfunktion der Vnternehmung (Produktions­funktion yom Typ F), Betriebswirtschaftliches Arbeitspapier Nr. 211979, Vniver­sitat zu KOln, Wirtschafts- und Sozialwissenschaftliche Fakultat, Seminar fUr Fer­tigungswirtschaft, KOln 1979

Matthes, W.: Produktionstheorie, funktionalistische, in: Kern, W., Schroder, H.-H., We­ber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1569 - 1584

Page 309: Produktionstheorie ||

Literaturverzeichnis 299

May, E.: Dynamische Produktionstheorie auf Basis der Aktivitatsanalyse, Physica­Verlag, Heidelberg 1992

Menger, K.: Bemerkungen zu den Ertragsgesetzen, in: Zeitschrift fUr NationalOkonomie 7, 1936a, S. 25 - 56

Menger, K.: Weitere Bemerkungen zu den Ertragsgesetzen, in: Zeitschrift fUr National­okonomie 7, 1936b, S. 388 - 397

Meyer, U.: Dynamische Input-Output-Modelle, Athenaum-Verlag, Konigstein 1980

Milling, P.: Entscheidungen bei unscharfen Prarrussen, in: Zeitschrift fUr Betriebswirt­schaft 52, 1982, S. 716 - 734

Moxter, A., Schneider, D., Wittmann, W. (Hrsg.): Produktionstheorie und Produktions­planung - Karl Hax zum 65. Geburtstag, Westdeutscher Verlag, Koln / Opladen 1966

Muller-Merbach, H.: Die Konstruktion von Input-Output-Modellen, in: Bergner, H. (Hrsg.), Planung und Rechnungswesen in der Betriebswirtschaftslehre, Berlin 1981, S. 19 - 113

Opitz, 0.: Zum Problem der Aktivitatsanalyse, in: Zeitschrift fUr die gesamte Staatswis­senschaft 127, 1971, S. 238 - 255

Pearl, D. J., Enos, J. L.: Engineering Production Functions and Technological Progress, in: The Journal ofIndustrial Economics 24, 1975, No.1, S. 55 - 72

Pichler, 0.: Anwendung der Matrizenrechnung auf betriebswirtschaftliche Aufgaben, in: Ingenieurs-Archiv 21, 1953a, S. 119 - 140

Pichler, 0.: Anwendung der Matrizenrechnung zur Erfassung von Betriebsablaufen, in: Ingenieurs-Archiv 21, 1953b, S. 157 - 175

Pichler, 0.: Wirtschaftliche Produktionsgestaltung, in: Unternehmensforschung 1, 1956, S. 3 - 6

Pressmar, D. B.: Ein mathematisches und geometrisches Modell der ertragsgesetzlichen Produktionsfunktion, in: Zeitschrift fUr Betriebswirtschaft 39, 1969, S. 301 - 322

Pressmar, D. B.: Kosten- und Leistungsanalyse im Industriebetrieb, Gabler-Verlag, Wiesbaden 1971

Reese, J.: Zeitlich-intensitatsmaBige Anpassung in der MaterialfluBplanung, in: Zeit­schrift fUr Betriebswirtschaft 53, 1983, S. 735 - 752

Reese, J.: Produktion, in: Corsten, H., ReiB, M. (Hrsg.), Betriebswirtschaftslehre, 01-denbourg Verlag, Munchen / Wien 1994, S. 737 - 835

Reichwald, R.: Produktionswirtschaft, in: Heinen, E. (Hrsg.), Industriebetriebslehre, Gabler-Verlag, Wiesbaden, 8. Aufl. 1985, S. 365 - 432

Riebel, P.: Die Kuppelproduktion, Westdeutscher Verlag, KOln / Opladen 1955

Riebel, P.: Industrielle Erzeugungsverfahren in betriebswirtschaftlicher Sicht, Gabler­Verlag, Wiesbaden 1963

Riebel, P.: Zur Programmplanung bei Kuppelproduktion, in: Zeitschrift fUr betriebswirt­schaftliche Forschung 23, 1971, S. 733 - 773

Page 310: Produktionstheorie ||

300 Literaturverzeichnis

Riebel, P.: Kuppelproduktion, in: Kern, W., SchrOder, H.-H., Weber, J. (Hrsg.), Hand­worterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 992 - 1004

Rommelfanger, H.: Entscheiden bei Unscharfe. Fuzzy Decision Support Systeme, Springer-Verlag, Berlin I Heidelberg I New York 1988

Roski, R.: Einsatz von Aggregaten - Modellierung und Planung, Duncker & Humblot, Berlin 1986

Schaefer, H. F.: Uber die Allgemeingiiltigkeit der Gutenberg-Produktionsfunktion, in: Zeitschrift fUr Betriebswirtschaft 48, 1978, S. 315 - 321

Schaefer, H. F.: Information in der Produktion, in: Zeitschrift fUr Betriebswirtschaft 55, 1985, S. 640 - 650

Schaefer, H. F.: Grundlagen einer informationsorientierten Produktions- und Kosten­theorie, S+W Steuer- und Wirtschaftsverlag, Hamburg 1986

Schaefer, H. F.: Produktionstheorie, stochastische, in: Kern, W., Schroder, H.-H., We­ber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1584 - 1595

Schiitzle, G.: Technischer Fortschritt und Produktionsfunktion, in: Moxter, A., Schnei­der, D., Wittmann, W. (Hrsg.), Produktionstheorie und Produktionsplanung, Westdeutscher Verlag, KOln I Opladen 1966, S. 37 - 61

Schiemenz, B.: Komplexitiit von Produktionssystemen, in: Kern, W., Schroder, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 895 - 904

Schltichtermann, J., Ventzke, R.: Okologische ProzeBplanung bei Emissionsrestriktio­nen, in: Adam, D. (Hrsg.), Umweltmanagement in der Produktion, Gabler-Verlag, Wiesbaden 1993, S. 115 - 127

SchneeweiB, c.: Der Zeitaspekt in der Planung, in: Hax, H., Kern, W., SchrOder, H. H. (Hrsg.), Zeitaspekte in betriebswirtschaftlicher Theorie und Praxis, Poeschel Ver­lag, Stuttgart 1988, S. 3 - 19

SchneeweiB, C.: EinfUhrung in die Produktionswirtschaft, Springer-Verlag, Berlin I Heidelberg I New York, 6. Aufl. 1997

Schneider, D.: Kostentheorie und verursachungsgerniiBe Kostenrechnung, in: Zeitschrift fUr handelswissenschaftliche Forschung, NF, 13, 1961, S. 677 - 707

Schneider, D.: "Lernkurven" und ihre Bedeutung fUr Produktionsplanung und Kosten­theorie, in: Zeitschrift fUr betriebswirtschaftliche Forschung 17, 1965, S. 501 - 515

Schneider, E.: Theorie der Produktion, Springer-Verlag, Wien 1934

Schreiber, W.: Neoklassische und moderne Produktions- und Kostentheorie - Ein Ver­gleich, in: Zeitschrift fUr Betriehswirtschaft 38, 1968, S. 69 - 91

Schtiler, W.: ProzeB- und Verfahrenswahl im einstufigen Einproduktunternehmen, in: Zeitschrift fUr Betriebswirtschaft 43, 1973, S. 435 - 458

Page 311: Produktionstheorie ||

Literaturverzeichnis 301

Schuler, W.: Kostenoptimaler Anlageneinsatz bei mehrstufiger Mehrproduktfertigung, in: Zeitschrift fUr Betriebswirtschaft 45, 1975, S. 393 - 406

Schuler, W.: Bemerkungen zum Problem der Anpassung an schwankende Beschafti­gungslagen, in: Zeitschrift fUr Betriebswirtschaft 46, 1976, S. 162 - 164

Schweitzer, M.: Zur Verbindung von Produktions- und Organisationstheorie, in: Zeit­schrift fUr Organisation 38, 1968, S. 24 - 29

Schweitzer, M.: Betriebswirtschaftliche Kostenfunktionen, in: Wirtschaftswissenschaft­liches Studium 6,1977, S. 66 -73

Schweitzer, M.: Produktionswirtschaftliche Forschung, in: Kern, W., Schroder, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1642 - 1656

Schweitzer, M., Kupper, H.-U.: Produktions- und Kostentheorie, Gabler-Verlag, Wies­baden, 2. Aufl. 1997

Shephard, R. W.: The Notion of a Production Function, in: Unternehmensforschung 11, 1967, S. 209 - 232

Shephard, R. W.: Theory of Cost and Production Functions, Princeton University Press, Princeton, N. J. 1970

Shephard, R. W., Hire, R.: The Law of Dimishing Returns, in: Zeitschrift fUr National­okonomie 34, 1974, S. 69 - 90

Smith, A.: An inquiry into the Nature and Causes of the Wealth of Nations, Whitestone, Dublin 1776

Sneed, J. D.: The Logical Structure of Mathematical Physics, Reidel, Dordrecht 1971

Solow, R. M.: Technical Change and the Aggregate Production Function, in: Review of Economics and Statistics 39, 1957, S. 312 - 320

Solow, R. M.: Investment and Technical Progress, in: Arrow, K. J./ Karlin, S./ Suppes, P. (Hrsg.), Mathematical Models in the Social Sciences, Stanford 1960, S. 89 -104

Stackelberg, H. von: Grundlagen einer reinen Kostentheorie, Springer-Verlag, Wien 1932

Steffen, R.: Analyse industrieller Elementarfaktoren in produktionstheoretischer Sicht, Erich Schmidt Verlag, Berlin 1973

Steffen, R.: Die Berucksichtigung von Job Rotation und teilautonomen Arbeitsgruppen in der betriebswirtschaftlichen Produktions- und Kostentheorie, in: Die Betriebs­wirtschaft 38, 1978, S. 421 - 433

Steffen, R.: Produktions- und Kostentheorie, Kohlhammer Verlag, Stuttgart, 3. Aufl. 1997

Stepan, A.: Produktionsfaktor Maschine, Physica-Verlag, Wurzburg / Wien 1981

Steven, M.: Umwelt als Produktionsfaktor?, in: Zeitschrift fUr Betriebswirtschaft 61, 1991, S. 509 - 523

Page 312: Produktionstheorie ||

302 Literaturverzeichnis

Steven, M.: Effizienz betrieblicher Entsorgungsprozesse, in: Betriebswirtschaftliche Forschung und Praxis 44,1992, S. 120 - 135

Steven, M.: Produktion und Umweltschutz - Ansatzpunkte fUr die Integration von Um­weltschutzmaBnahmen in die Produktionstheorie, Gabler-Verlag, Wiesbaden 1994a

Steven, M.: Dynamische Analyse des Umweltfaktors in der Produktion, in: Zeitschrift fUr Betriebswirtschaft 64, 1994b, S. 493 - 513

Steven, M.: Die Einbeziehung des Umweltfaktors in die Gutenberg­Produktionsfunktion, in: Zeitschrift fUr Betriebswirtschaft 64, 1994c, S. 1491 -1512

Steven, M.: Hierarchische Produktionsplanung, Physica-Verlag, Heidelberg, 2. Aufl. 1994d

Steven, M.: Kapazitiitsgestaltung und -optimierung, in: Kern, W., SchrOder, H.-H., We­ber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 874 - 883

Steven, M.: Die Bedeutung der Gutenberg'schen Produktionstheorie fUr die Produk­tionsplanung und -steuerung, in: Albach, H., Luhmer, A., Steven, M. (Hrsg.), Die Theorie der Unternehmung in Wissenschaft und Praxis, Springer-Verlag, Berlin I Heidelberg I New York 1998, in Vorbereitung

Steven, M., Behrens, S.: Zur strukturalistischen Produktionstheorie von Zelewski, in: Betriebswirtschaftliche Forschung und Praxis 50, 1998, in Vorbereitung

Stoppler, S.: Dynamische Produktionstheorie, Westdeutscher Verlag, Opladen 1975

Strebel, H.: Umwelt und Betriebswirtschaft, Erich Schmidt Verlag, Berlin 1980

Strebel, H.: Umweltwirkungen der Produktion, in: Zeitschrift fUr betriebswirtschaftliche Forschung 33, 1981, S. 508 - 521

Strebel, H.: Okologie und Produktion, in: Kern, W., SchrOder, H.-H., Weber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1303 - 1313

Thtinen, J. H. von: Der isolierte Staat in Beziehung auf Landwirtschaft und National­okonomie, Hamburg 1826

TroBmann, E.: Grundlagen einer dynamischen Theorie und Politik der betrieblichen Produktion, Duncker & Humblot, Berlin 1983

TroBmann, E.: Betriebliche Bedarfsplanung auf der Grundlage einer dynamischen Pro-duktionstheorie, in: Zeitschrift fUr Betriebswirtschaft 56, 1986, S. 827 - 847

Turgot, J.: Reflexions sur la formation et la distribution des richesses, Paris 1766

Uebe, G.: Produktionstheorie, Springer-Verlag, Berlin I Heidelberg I New York 1976

Uzawa, H.: Production Functions with Constant Elasticities of Scale, in: Review of Economic Studies 29, 1960-63, S. 291 - 299

Uzawa, H.: Duality Principles in the Theory of Cost and Production, in: International Economic Review 5, 1964, S. 216 - 220

Page 313: Produktionstheorie ||

Literaturverzeichnis 303

Vaszonyi, A.: Die Planungsrechnung in Wirtschaft und Industrie, Oldenbourg, Munchen IWien 1962

Ventzke, R.: Umweltorientierte Produktionsplanung, Peter Lang, Frankfurt am Main u.a.1994

Wagner, J.: Input-Output-Analyse auf dem PC, in: Wirtschaftswissenschaftliches Studi­urn 21, 1992, S. 525 - 528

Walger, G.: Produktive Produktion - Ein Beitrag zur Rekonstruktion der Betriebswirt­schaftslehre als okonomische Theorie, Verlag Paul Haupt, Bern usw. 1993

Wall, F.: Die Input-Output-Analyse in der Betriebswirtschaftlichen Produktionstheorie, in: Wirtschaftswissenschaftliches Studium 23, 1994, S. 290 - 295

Weber, H. K.: Zum System produktiver Faktoren, in: Zeitschrift fur betriebswirtschaftli­che Forschung 32, 1980, S. 1056 - 1071

Weddigen, W.: Anne Robert Jaques Turgot - Leben und Bedeutung des Finanzministers Ludwig XVI., Meisenbach, Bamberg 1950

Wenig, A.: Aggregationsprobleme in der Produktionstheorie, Dissertation Regensburg 1969

Wenke, K.: Zur Kalkulation von Kuppelprodukten, in: Zeitschrift fur Betriebswirtschaft 31,1961, S. 12 - 29

Witte, T.: Produktionsfunktionen und ihre betriebswirtschaftliche Bedeutung, in: Das Wirtschaftsstudium 17, 1988, S. 457 - 462

Wittmann, W.: Lineare Programmierung und traditionelle Produktionstheorie, in: Zeit­schrift fur handelswissenschaftliche Forschung N. F. 12, 1960, S. 1 - 17

Wittmann, W.: tiber Faktoreigenschaften und Bedingungen beim Ertragsgesetz, in: Zeitschrift fur die gesamte Staatswissenschaft 118, 1962, S. 385 - 407

Wittmann, W.: Grundzuge einer axiomatischen Produktionstheorie, in: Moxter, A., Schneider, D., Wittmann, W. (Hrsg.), Produktionstheorie und Produktionspla­nung, Westdeutscher Verlag, K61n 1 Opladen 1966, S. 9 - 36

Wittmann, W.: Produktionstheorie, Springer-Verlag, Berlin 1 Heidelberg 1 New York 1968

Wittmann, W.: Von der Produktionsfunktion zur effizienten Technologiemenge. Neuere Darstellungsweisen in der Produktionstheorie, in: Das Wirtschaftsstudium 4, 1975, S. 276 - 280

Wittmann, W. u.a. (Hrsg.): Handworterbuch der Betriebswirtschaft, 3 Bde., Schiiffer­Poeschel, Stuttgart,S. Aufl. 1993/4

Wohltmann, H.-W., Roski, R: Planungsmoglichkeiten in betrieblichen Produkti­onsstrukturen, in: Zeitschrift fUr Betriebswirtschaft 55, 1985, S. 731 - 752

Wright, T. P.: Factors Affecting the Cost of Airplanes, in: Journal of the Aeronautical Sciences 1936, S. 122 - 128

Wysocki, K. von: Der EinfluB von Steuern auf Produktions- und Kostenfunktionen, in: Zeitschrift fUr Betriebswirtschaft 34, 1964, S. 15 - 36

Page 314: Produktionstheorie ||

304 Literaturverzeichnis

Zadeh, L. A.: Fuzzy Sets, in: Information and Control 8, 1965, S. 338 - 353

zapfel, G.: Grundziige des Produktions- und Logistikmanagement, de Gruyter, Berlin / New York 1996

Zelewski, S.: Kapazitatsvergleich produktionswirtschaftlicher Theorien - Ein Ansatz auf der Basis des "non statement view", in: Corsten, H., Kohler, R., Miiller-Merbach, H., Schroder, H.-H. (Hrsg.), KapaziUi.tsmessung, Kapazitatsgestaltung, Kapazi­tatsoptimierung - eine betriebswirtschaftliche Kernfrage, Schaffer-Poeschel Ver­lag, Stuttgart 1992, S. 63 - 93

Zelewski, S.: Strukturalistische Produktionstheorie - Konstruktion und Analyse aus der Perspektive des "non statement view", Gabler-Verlag, Wiesbaden 1993a

Zelewski, S.: Umweltschutz als Herausforderung an die produktionswirtschaftliche Theoriebildung, in: Zeitschrift fUr Betriebswirtschaft 63, 1993b, S. 323 - 350

Zelewski, S.: Produktionstheorie aus der Perspektive des "non statement view", in: Zeit­schrift fUr Betriebswirtschaft 64, 1994, S. 897 - 922

Zelewski, S.: Zur Wiederbelebung des Konzepts technologischer Theorietransformatio­nen im Rahmen produktionswirtschaftlicher Handlungsempfehlungen, in: Wach­ter, H. (Hrsg.), Selbstverstandnis betriebswirtschaftlicher Forschung und Lehre, Gabler-Verlag, Wiesbaden 1995, S. 87 - 124

Zelewski, S.: Produktionstheorie, strukturalistische, in: Kern, W., Schroder, H.-H., We­ber, J. (Hrsg.), Handworterbuch der Produktionswirtschaft, Schaffer-Poeschel, Stuttgart, 2. Aufl. 1996, Sp. 1595 - 1603

Zimmermann, H.-J.: Optimale Entscheidungen bei unscharfen Problembeschreibungen, in: Zeitschrift fUr betriebswirtschaftliche Forschung 27, 1975, S. 785 - 795

Zschocke, D.: Betriebsokonometrie. Stochastische und technologische Aspekte bei der Bildung von Produktionsmodellen und Produktionsstrukturen, Physica-Verlag, Wiirzburg / Wien 1974

Zwehl, W. von, Brink, A.: Optimale Aggregatanpassung bei begrenzt verfiigbaren Ein­satzfaktoren, in: Zeitschrift fiir Betriebswirtschaft 64, 1994, S. 1109 - 1142

Page 315: Produktionstheorie ||

Stichwortverzeichnis

AbfaH 8, 13, 15,90 ff., 116, 159 Abgaben 117 f., 160 f., 167, 171 Ablaufentscheidungen 231, 288 Absatzgrenzen 106, 119 Absatzmarkt 90, 119,209 Abschreibungen 8, 143,237,250 AdditiviUit 63,68 ff., 71, 94, 119 Akkordlohn 9, 145 Aktivitat 5, 63 ff., 93 ff., 102, 134, 156,

167,238,247,252ff. Aktivitat, dynarnische 250 Aktivitatsanalyse, Iineare 22 ff., 62 ff.,

87,93 ff., 104 ff., 119 ff., 125, 172, 238,251 ff., 287

Anlaufphase 175, 182, 187 Anpassung, intensitatsmiillige 23, 126 ff.,

143 ff., 153 ff., 160 ff., 238, 281 Anpassung, quantitative 126 ff., 138 ff.,

143,152,172,281 Anpassung, selektive 141 Anpassung, zeitIiche 126, 129 ff., 135 ff.,

139,143,151,155,160,165,170,281 Anpassungsformen 129 ff., 150, 153,

159,165,170,232,281 Anpassungspfad 150, 155 f., 160 ff., 166,

170 f. Arbeit, dispositive 4 Arbeit, objektbezogene 4 Arbeitskrafte 9, 111, 127, 136, 143, 191,

222,229,237,258,274 Arbeitsleistung 4,8, 128 Arbeitszeit 131, 135 ff., 151 AufbereitungsprozeB 169 Auflagen 9,159 f., 165, 171,245,248 AuftragsindividuaIitat 271 AusschuB 145, 193 ff., 197,258 AusschuBkoeffizient 194 ff., 200, 211 Austauschrate, okologische 100, 104 Austauschverhaltnis 37, 45, 85, 105, 126 Automatisierung 4, 239, 280 Axiome 63, 253, 256

Basisaktivitat 65 f., 78 Bearbeitungsphase 175, 187 Belastungsfunktion 185 Belastungsisoquanten 190 Beschaffung 1, 198,226,258 Beschaffungsmarkt 90, 209 Bestandskonstanz 79 Betriebsbereitschaft 135, 182,282 BetriebsgroBenvariation, multiple 142 BetriebsgroBenvariation, mutative 142 Betriebsrninimum 34

305

Betriebsrnittel 4 f., 7 f., 56, 62, 83, 111, 118,126 ff., 145, 150, 172, 179 ff., 198,232,237,250,274,280

Betriebsoptimum 34 Betriebsstoffe 3, 127, 145, 178 ff., 201,

278 Betriebswirtschaftslehre 21, 60, 268 f.,

287 Bewerten 7 f., 11 Bewertungsmodell 115 Break-Even-Analyse 151, 158 Bremsphase 175, 183, 187

CES-Produktionsfunktion 49 ff., 61, 238, 241

Chance-Constrained-Mode1l258 COBB-DouGLAs-Produktionsfunktion 37,

42,44,47,49 ff., 60 f., 237, 241

Deckungsbeitrag 114 f., 117 f. Dienstleistungen 3, 5, 8, 251, 268 ff. Dienstleistungsproduktion 1, 268 ff., 288 Direktbedarfsmatrix 213, 216, 224 Dorninanz 9 ff., 36, 70 Dualitatstheorie 115 Dualvariable 74 ff., 83, 86, 100, 105, 112

f., 120 Durchschnittsertrag 28 ff. Durchschnittskosten 32 ff. Durchschnittskosten, variable 32 ff.

Page 316: Produktionstheorie ||

306

Eckentheorem 108 f. Effizienz 6, 9 ff., 18,29,35 f., 45, 48, 51,

63, 66, 70, 78, 85 ff., 93, 105, 119, 127,158,240,247,253 f., 287

Einproduktfall 7, 9, 14, 36, 61, 65 f., 71, 78 f., 87, 106, 121, 192

Elementarkombination 23 f., 126, 173 ff., 211,232

Elementarkombination, limitationale 176 ff., 187

Elementarkombination, outputfixe 176 ff., 187, 190

Elementarkombination, outputvariable 176 ff., 190,201

Elementarkombination, primare 177 ff., 192 ff., 197

Elementarkombination, sekundiire 178, 192, 198 ff.

Elementarkombination, substitutionale 176 ff., 190,201

Elementarkombination, tertiiire 178, 192, 199 f.

Emission 93 ff., 161 Emissionsfunktion 159 ff. Emissionsgrenzen 91 f., 94, 100, 118 f. Emissionskoeffizient 94 Endkombination 274 ff. Engineering Production Function 22, 126 Engpasse 67, 111, 121, 128 Entsorgung 91, 102, 105, 159 Entsorgungskosten 92, 117 EntsorgungsprozeB 96, 99, 102 Entsorgungsverfahren, additives 96 Erlose 8, 11,57 ff., 92, 113 f., 117,281 Ersatzinvestition 239 Ertragsgebirge 27, 36 f., 39, 43, 45, 75,

78 f., 97 Ertragsgesetz 25,35,61,83, 105 Ertragsgesetz, klassisches 22, 24, 25 ff.,

31 ff. Ertragsgesetz, neoklassisches 25, 43 f.,

82

Faktor, dispositiver 278 Faktor, extemer 271 ff., 278, 285

Stichwortverzeichnis

Faktorallokation 14 Faktoreinsatzfunktion 7,31,56 f., 66, 80,

84 ff., 97, 102, 131 ff., 146 ff., 160, 179,197,200

Faktoreinsatzmengenverhrutnis 46, 143, 172

Faktorpakete 83 Faktorpreise 9,51 ff., 106 ff., 114, 147 f.,

201,237,241 Faktorsubstitution 87, 172 Faktorvariation, partielle 37, 42 ff., 56 ff.,

67,80 ff., 97, 105, 110 f., 121, 128 Faktorvariation, totale 37 ff., 55, 67, 78,

109, 113, 121 Fertigung, industrielle 61, 239 Fertigung, mechanische 176 Fertigungsindustrie 129,202 Fertigungsprogramm 200, 230 Fertigungssysteme, flexible 179, 268 Fertigungstyp 16 f., 23, 190 Finanzwirtschaft 1, 232, 235 Fixkosten 32, 56, 110 f., 114, 135 f., 143,

148, 151 f., 280 Fixkostendegression 34 Fortschritt, technischer 12, 60, 97, 141,

221,237 ff., 247 Fortschrittsfunktion 237, 240 ff. Fortschrittsterm 240, 243 free disposal 71, 90 fuzzy set theory 259

Gesamtbedarfsmatrix 213 f., 217 Gesamtertrag 28 ff. Gesamtkosten 32 ff., 55 f., 58 ff., 109 f.,

141, 148 ff., 156 f., 245 Gesamtrechnung, volkswirtschaftliche

202 Gesetz der Massenproduktion 22 Gewinnmaximierung 51, 57 ff., 90, 106,

113 ff. GOZINTo-Graph 204, 263 Grenzertrag 22, 24, 28 ff., 36, 42 f., 122 Grenzkosten 32 ff., 54 f., 59, 112 f., 141 Grenzproduktivitat 47,83 Grenzrate der Produktsubstitution 89

Page 317: Produktionstheorie ||

Stichwortverzeichnis

Grenzrate der Substitution 36, 46 f., 49, 52f(, 67, 86, 102, 108, 122,237,241

Grenzwerte 117 f., 159 f., 165, 169,245 GUTENBERG-Produktionsfunktion 23 f.,

126 ff., 138, 143, 150, 158, 168, 175, 185,211,251,257,287

Giiter, freie 9, 91, 161 Giiter, materielle 1,3 Guterartenmodell 266 Gutermengenmodell 266 Guterraum 5,65, 84 f., 97, 104 f.

lIEINEN-Produktionsfunktion 23 f., 126 , 173 ff., 200ff., 211

HeiBlaufphase 145 Hilfsstoffe 3,127,178 f., 278 Homogenitiitsgrad 41 f., 50, 55

Immaterialitiit 271 ff. Industrie, ehemisehe 202 fudustrie, prozeBteehnisehe 201 fueffizienz 34, 36, 48, 63, 70, 94, 247 InputiOutput-Analyse 23 f., 212 fuputiOutput -Analyse, betriebswirtsehaft-

liehe 126,202 ff., 219, 259, 263, 288 fuputiOutput-Gleiehungen 23, 203, 208

ff.,218 fuputiOutput-Graph 203 ff., 208 fuputiOutput-Matrix 23, 203 ff., 208,

213,217 InputiOutput-Theorie 126,223 Inputkoeffizient 196, 206 futensitiit 180, 185 Intensitiitssplitting 156 f., 169 Interdependenzen 14, 21 fuvestitionsentseheidung 130,247 f. fuvestitionstheorie 191,250 Irreversibilitiit 63, 254 Isokostengerade 52 ff., 107,242 ff. Isoquante 37, 45 ff., 51 ff., 67, 80, 85 ff.,

97,107 f., 121, 131, 165,242 ff. Isoquantengleiehung 45 ff., 53 (

Kapazitiit 51, 58, 118 f., 130, 141 f., 220, 230,240,279

Kapazitiitsgrenze 29, 34 ,79, 85, 161 Kapitalproduktivitiit 60 Kegelteehnologie 73 Knappheit 8,67,238,245 Knappheitspreise 115, 118

307

Komplexitiit 13, 15, 23, 78, 201, 230, 283,287

Komplexitiitstheorie 120 Konvexkombination 69, 74, 85, 122, 155

f., 169 Konzentrationswert 168 ( Kopplung, feste 87, 177 Kopplung, lose 87 Kopplungskoeffizient 65,73,87 Kosten 8 f., 11, 54, 57 ff., 109 ff., 119,

134,147,200,246,281 Kosten, intervallfixe 141 Kosten, sprungfixe 139 ff., 151 f. Kosten, variable 32, 114, 134 f., 141 KosteneinfluBgroBen 201 Kostenexpansionspfad 57 f. Kostenfunktion 9,31,35,54 ff., 109 ff.,

137 ff., 152, 156, 161, 173,200 Kostenfunktion, klassisehe 32 ff. Kostenfunktion, neoklassisehe 55 Kostenminimierung 51, 106, 226 Kostenmode1l203, 216 f( Kostenreehnung 216 f., 288 Kostenremanenz 142, 153 Kostenverliiufe 126, 135 Kuppelprodukte 5, 15, 90 f., 96, 118,

159,284 Kuppelproduktion 14,87, 177,202 Kuppelproduktion, elastisehe 15,87, 177 Kuppe1produktion, starre 15,87 Kurzarbeit 135

Lagerbestand 171,220 ff., 232 Lagerbilanz 220 Lagerfahigkeit 271 f., 280 Lagrange-Ansatz 53 Lagrange-Funktion 53, 58 Landwirtsehaft 1, 25, 34 Leerkosten 143,280 Leerlaufphase 175, 183

Page 318: Produktionstheorie ||

308

Leerzeiten 221, 230 Leistung, okonomische 23 Leistung, technische 23,173, 180 ff. Leistungsabgabe 62, 127 ff. Leistungsbereitschaft 274 ff., 279 f. Leistungsbtindel 272, 285 Leistungslohn 191 Leistungspotential126, 190,279 Leistungsverrechnung, innerbetriebliche

216 LEONTIEFF-Produktionsfunktion 19, 22,

62,67,176,210,213,227 Lerneffekt221,249 Lieferbeziehungen 15 f., 24, 126, 204,

263 f. Limitationalitat 17 ff., 25, 61, 65 f., 80,

87, 122, 125 f., 135, 172 Limitationalitat, line are 19 f., 62, 71, 218 Limitationalitat, nichtlineare 19 f., 71 Liquiditat 119, 235 LosgroBe 51, 197 f., 201, 211, 221 .e -Situation 180, 190,212

Markt, vollkommener 58 Marktpreis 8, 58 f., 113, 137,237 Materialbedarfsplanung 195 MaterialfluB 16,61,205 f., 220 Materialwirtschaft 210,218 Maximalintensitat 130 Maximierungsproblem 74 ff., 83, 89, 97 Mehrproduktfall 7, 14,66 f., 73, 78,87 f.,

116,121,194,203 Mehrzweckmaschinen 179,249 Menge, konvexe 74 Menge, unscharfe 259 ff., 284 Mengengertist 8 f., 175, 191 Mengenmodell 115 Messen 7 ff. Metra-Potential-Methode 232 Mindestausbringungsmenge 84, 88, 101,

119,134,160 Minimalintensitat 130, 150 Minima1kostenkombination 51 ff., 57 f.,

106 ff., 113, 125, 171,237,242 f., 280 Minimierungsproblem 74 ff., 84, 86, 112

Stichwortverzeichnis

Modell, dynamisches 20 f. Modell, kinetisches 20 f. Modell, komparativ-statisches 20 f. Modell, statisches 20 Moglichkeit der Verschwendung 63 Momentanleistung 180 ff. Momentanverbrauch 181 ff. MontageprozeB 145 Montagestruktur 15 f., 61, 197,205

Netzp1antechnik 235 Netzwerk 232 Niveaugrenzproduktivitat 38, 41 Nominalfaktoren 278 non-statement-view 251 ff. Normalarbeitszeit 153, 158 Nullaktivitat 63, 155,253 Nutzkosten 280 Nutzungsdauer 237,247 Nutzungspotential4, 7, 119, 127,250

Okonometrie 60 Opportunitatserlose 92, 117 Opportunitatskosten 8 f., 165 Optimalitatsbedingung 58, 113

Personalwirtschaft 191 Planungsperiode 56 Planungszeitraum 21, 224 Postulate 62 Potentialfaktoren 4, 125, 129, 176, 190 f.,

200,233,250,278 Praferenz 253 f. Pramienlohn 9 Preise 8, 106, 135, 200 Preissystem 11, 109 Preistheorem 115, 118, 120 Preistheorie 22, 58 Preisuntergrenze 34, 216 f. Preisverhaltnis 107, 171, 241, 244 Primarbedarf 212, 215 Prinzip,okonomisches 12,29,70,90 Produktfunktion 7, 67, 200 Produktion, einstufige 15, 192 Produktion, geschlossene 223, 226

Page 319: Produktionstheorie ||

Stichwortverzeichnis

Produktion, industrielle 1, 22, 25, 34, 125,268

Produktion, mehrstufige 15, 23, 194 f., 203,220,279

Produktion, offene 223 Produktion, unverbundene 14, 87 Produktion, verbundene 14 Produktionsaltemative 6, 9 ff., 35, 39, 48,

63 ff., 78 Produktionsfaktoren 1, 4, 7, 10, 13, 17

ff., 25 ff., 91 ff., 190 Produktionsfaktoren, derivative 194 f.,

198,205,209 Produktionsfaktoren, originare 194 f.,

204,209 Produktionsfaktorsystem 276 ff., 283,

285 Produktionsfunktion ex ante 236 ff. Produktionsfunktion ex post 236 ff. Produktionsfunktion, betriebswirtsehaft-

liehe 121, 125 ff., 251 Produktionsfunktion, dynamisehe 173,

219 ff., 232 ff. Produktionsfunktion, ertragsgesetzliehe

25,125,176,204,209,287 Produktionsfunktion, homo gene 41, 50,

54 Produktionsfunktion, klassisehe 26 ff., 34

f., 121 Produktionsfunktion, limitationale 22 Produktionsfunktion, linear-homo gene

55,58,79,122 Produktionsfunktion, neoklassisehe 36

ff., 60 ff., 121 f., 280 Produktionsfunktion, partielle 42, 56 Produktionsfunktion, statisehe 219 Produktionsfunktion, unseharfe 251, 258

ff. Produktionsgesehwindigkeit 21, 130 ff.,

135 ff., 143 ff., 151, 156 f., 160, 165, 171,194,222

Produktionskoeffizient 13, 19, 22 f., 64, 66, 71, 73, 79, 82, 87, 109, 122, 132, 135 ff., 143 f., 167, 172, 196 f., 211, 227,233,242

309

Produktionskorrespondenz 5 f. Produktionsmengenmodell 221, 231 Produktionsmodell 13, 17, 20, 203, 212

ff., 216, 233, 263 Produktionsmogliehkeiten 70, 87, 134 Produktionsplanung 24, 36, 51 ff., 106

ff., 116 ff., 199,203,218,231,238 Produktionsplanung und -steuerung 273,

288 Produktionsprogramm 70, 116, 135,216 ProduktionsprozeB 1,4, 15,23,64 f., 69,

72, 78 ff., 90, 95 ff., 108, 114, 120, 136, 139, 143, 154, 159, 194, 205, 211,220,236 f., 242, 263, 276, 285

Produktionsstelle 15 f., 23, 61, 129, 139, 173 f., 193 ff., 203 ff., 215, 222 ff., 263 f.

Produktionsstruktur, allgemeine 16, 197, 203,205,266

Produktionsstruktur, komplexe 17 Produktionsstruktur, lineare 15, 194 f.,

205,265 Produktionsstruktur, nieht-zyklisehe 209,

215 Produktionsstruktur, zyklisehe 203, 207,

215,218 Produktionsstufe 15, 17, 194,220,224 Produktionstheorie, dynamisehe 23, 201,

219 ff., 238 ff., 249 ff., 280 Produktionstheorie, klassisehe 22 f., 43,

62, 125, 150 Produktionstheorie, neoklassisehe 22, 36

ff.,43 ff., 51 ff., 62, 78, 86, 125 Produktionstheorie, prozeBorientierte 283 Produktionstheorie, stoehastisehe 258 Produktionstheorie, strukturalistisehe 251

ff. Produktionsverfahren 63, 239 Produktionsvorglinge 20, 232 Produktionszeitenmodell 221, 230 ProduktiviUit 9 f., 12, 27, 29, 213, 219,

242 f., 287 Produktsubstitution 88 f. Programmierung, lineare 22,80, 108, 114

f., 119

Page 320: Produktionstheorie ||

310

Programmierung, parametrische lineare 74, 82 f., 88 ff., 97 ff., 106, 112, 118, 121

Programmkoeffizient 197 Projekt 232 ff. Proportionalitat 63 ff., 68, 71, 94, 119 ProzeBkombination 69 f., 81, 86 f., 94,

106, 238 ff., 247 ProzeBniveau 72, 121 ProzeBstrahl 19 f., 65 f., 78, 109, l35,

143,243 ProzeBsubstitution 125, 172 ProzeBwechsel 83, 86, 89, 97, 101, 110

f., 122, 159 Putty-Clay-Modell 236 ff.

Qualitat 255,258,268,281,283 ff.

Rationalisierung l3, 239, 249 Rationalitat 253 f. Realitatsniihe 24, 173 Recycling 91 f., 159, 169 f., 218 RecyclingprozeB 96, 99, 102 Referenzprodukt 73, 94 Regiefaktoren 278 Reihenfolgeplanung 14,51,231 Rentabilitat 255 Repetierfaktoren 3, 178, 192,201 Ressourcenallokation 119 Reststoffe 92 Risikoerwartung 258 Rohstoffe 3, 127,278 Rustvorgang 198, 220, 230

Sachgtiter 268 ff., 283 Sachleistung 276 ff. Schadstoffart, linksminimale 161 ff., 167 Schadstoffart, rechtsminimale 161 ff. SchadstoffausstoB 97, 100, 105, 116, 159,

168 Schadstoffe 8, 15, 90 ff., 102, 106, 118,

160,167 Schadstoffreduktion 100, 119 Schadstoffvemichtungskoeffizient 94 ff. Schlaraffenland 63, 254

Stichwortverzeichnis

Schnitt, achsenparalleler 75, 78, 84, 97 Schnitt, nicht-achsenparalleler 84,99 Schwankungen, stochastische 120 Sektor, primarer 269 f. Sektor, sekundarer 269 f. Sektor, tertiiirer 269 f. Sekundarrohstoffe 159, 169 Sensitivitatsanalyse 120, 258 Serienfertigung 221 Sicherheitsiiquivalent 258 Sicherheitsbestand 228 Skalenelastizitat 41, 50 Skalenertrage, abnehmende 36, 38 ff., 42,

50,55,58 Skalenertrage, konstante 36, 38 ff., 42,

50,60,79,122 Skalenertrage, zunehmende 38 ff., 50, 60 Sortenfertigung 199,221 Stand der Technik 239 Stillstandsphase 182 f. Strukturalismus 251 ff. Strukturmatrix 206 f., 229, 264 Stuckkosten, variable 58, 109 f., 1l3,

137, 148, 152 f., 158, 169,249 StUckliste 145, 179 StUcklistenauflosung 195,209,218,288 Stufenleiterverfahren 217 Substitution 37, 62, 70, 86,92, 122, 165,

169,172,236 ff. Substitutionalitat 17 ff., 22, 25, 104, 125,

131, 172, 185 Substitutionalitat, partielle 17 f., 45, 61 Substitutionalitat, totale 17 f. Substitutionselastizitat 49 f. Substitutionsgebiet 70,85, 122

Technologie 91, 105, 121, 159, 169 f., 239 ff., 248

Technologie, lineare 22, 62, 65 ff., 75, 78 ff.,86,95,99, 104, 113

Technologie, nichtlineare 71 Technologiematrix 71 ff., 95 ff., 214 Technologiemenge 63, 68 ff., 78 ff., 87,

95, l34, 160,238 ff., 246 f., 252 f. Technologiewahl 236 ff., 246 f., 280

Page 321: Produktionstheorie ||

Stichwortverzeichnis

Teileverwendungsnachweis 209 Teilperiode 228, 230, 235 Theorie der Anpassungsformen 22, 24,

150 Theorienetz 257 Theoriespezialisierung 257 Totalkapazitlit 191 Totalmode1l231,235 Transformation 1, 15,90, 175,275 Transformationsfunktion 202, 210 ff.,

222 ff., 229, 234 Transformationskurve 89, 97, 102, 105 TransformationsprozeB 172, 197, 275 f.,

287f.

Uberstunden 136 f., 151 f., 158 Umrtistvorgang 179, 199 Umwelt, natiirliche 1,4,8, 159, 161,278 Umweltbelastungen 102, 105, 119,259 Umweltgesetzgebung 94, 239 Umweltgiiter 5, 8 f., 90 ff., 104 f., 116 ff.,

158 f., 165, 171,201,239,252,287 f. Umweltkostenrechnung 165 Umweltschaden 91 f., 159 Umweltschutz 102, 126, 158,171,255 Umweltschutz, integrierter 97, 159 UmweltschutzmaBnahmen 117,288 UmweltschutzmaBnahmen, additive 128,

159 Umweltschutzvorschriften 71, 159,245 uno-actu-Prinzip 271 Unscharte 259 ff. Unsicherheit 231, 258 ff., 267,281 UntemehmensfUhrung 1 u-Situation 180, 184 f., 190,212

Variation, parametrische 75,84, 118 Verbrauchsfaktoren 3, 56, 79, 125, 128,

146, 172, 192, 278 f. Verbrauchsfunktion 23, 131 ff., 143 ff.,

150,159, 179 ff. Verbrauchsfunktion, okonornische 174 f.,

186 Verbrauchsfunktion, technische 174, 179

ff., 185 ff.

311

Veredelungsfertigung 15 Verrechnungspreise 216 f. Verschwendung 10,61,71, 119, 130,253 Verteilungsparameter 193, 200, 211 Verweilzeit 222, 224 Verwertung, therrnische 91 Volkswirtschaftslehre 22,60, 126 Vorkombination 274 ff. Vorlaufverschiebung 220,223 Vorprodukt 15,235

Warmlaufen 140 Wartezeiten 221, 230 Wartung 8, 199,220,250 Werkstoffe 3, 5, 7 f., 13, 83, 126 f., 136

ff., 160, 171, 178 ff., 237, 274 Wertgeriist 8 f., 191 Wertschopfung 206, 269 Wiederholungsfunktionen 23, 173, 178,

192 ff.

Zeitablauf 20 f., 60, 127,246,249 Zeitbelastungsfunktion 185, 188 f. Zeit-Leistungs-Diagramm 131, 155, 161,

166 Zeitlohn 9, 145, 191 Zeitverbrauchsfunktion 185 f. z-Situation 128, 130, 133, 173, 179 f.,

186,212 Zufallsvariable 258 ZugehOrigkeitsfunktion 259 ff. Zugehorigkeitsgrad 259 ff. Zusatzfaktoren 4 Zwischenprodukte 3, 197,204,215,233

Page 322: Produktionstheorie ||

Die ganze Welt der Wirtschaft

G .... LlR WlRTSCHAfTS-UXIKON 14., voIl~ndig Uberorbeilele vod ~te<te Aulloge 1997 4.587 Seileo, vier BOnde 1m Sthuber, gebunden in Cobro-!.edeMiti, mil Sd>utrvnuchlog, OM 500,-ISBN 3-409-32997-8

GABLER WlRTSCHAfT$· UXIKON 14., voIl.tandig uberarbeijete uncI.-ite<te Aulloge 1997 4.587 Seilen, zehn BOnde im Schuber, 6r00chur, OM 188,­ISBN 3-.409-30387- 1

GABLER WlRTSCHAm-LEXIKON 14., voIlOOodig Vberorbeitete unci ~_ AuRoge 1997 CD-ROM in KIOppbox, OM 188,-' ISBN 3-409-39926-7

---Ein rnode.ner Klan,k&< de. WirtschofM..terolur

mit weil (;be. 400.000 lo_n: do5 Goble;-

Wirtscllof!s.texikon. Pi' ::00 meb 91: 3 OC¥? Deed. 'pui ... 14. AuRoge behoooeh aul iiber 4.000 Seilen in ruod n m §'isbwiWtis mjl bewi:ihrte.- Inlormalioruliele aile klanischen sow'e die heulol aktuell diskvrierlren Themen will

Agency.Theo<je, leapfrogging, virtu&lle Un!ernet.­mung Imd viele mehr. Zudem wu.den z. B. die

SHchwOrte. zu MorkeHng und Re<;hnu"9.wtlMn

llo.k okluoli,ierl und _i!ert, do, Gebiel VoIk.. wirtschoft neu slruklllriert. Oie wasam'sSss''S ~ aus Wiuenschoh .. /lid Praxis hobon ill,e lCompelenl. vefeinr. Seil vier Johrzehnlen

SP"koSP' !!Whueed im Inhoh und Z'Pfftrltj"ie in de. [)gQleliung:

do. GABLER WIRTSCHAFTS-LEXIKONI

Abrooo.n-tincoin-SIroBe .46, Postfoch 15A7,65005W~, Fox{0611)7878·400 http://www.gabIer-online.de

Page 323: Produktionstheorie ||

immer aktuell •

1"'~""lr Management International Review

• mir wendet sich an Sie als Wissenschaftler

und FOhrungskraft, die 5ich auf internatio·

nale Wirtschaft spezialisiert hat.

• mir verbreitet die aktuellen Ergebnisse dec

internationalen angewandten Forschung

aus Unternehmensti..ihrung und

Betriebswirtschaftslehre.

• mir fordert den Austausch von Forschungsergebnissen

und Erfahrungen zwischen Wissenschaft und Praxis.

• mir zeigt, wie Sie wissenschaftliche Madelle und Methoden

in die Praxis umsetzen konnen.

• mir bietet Ihnen als Leser die M6glichkeit, in einem speziell

datur vorgesehenen "Executive Forum" IU den wissenschaft­

lichen Beitragen und zu aktuell interessierenden Problemen aus

der Sieht der Praxis 5tellung zu "ehmen.

• mir erscheint 4x jahrlich in englischer Sprache.

Abranam-Uncoln-Str. 46, Postfach 1547, 65005 Wiesbaden, Fax: (0611) 78 "78-'12'; J

Page 324: Produktionstheorie ||

und Praxis

ZfB - Zeitschrift fiir Betriebswirtschaft

• ItB - das Wichtigste aus Forschung und Untemehmenspraxis:

die neuesten Beitrage renommierter Wissenschaftler und hervorragender Fachleute aus Unternehmen;

Berkhte Gber den Einsatz betriebswirtschahlicher Methoden in Betrieben; Fallstudien aus der Unternehmenspraxis; ,.state-of-the-Art" -Artikel, die

Entwicklung und Stand eines Teilbereichs der Betriebswirtschaftslehre systematisch darstellen.

• Zfa - aktuelle fachlithe Orientierung:

--.. =--.~------------:==-----'::"_"'= -===-.. _.--_ .... --_ .. -

Rezensionen aktueller FachbGcher der Betriebswirtschaftslehre. der Manage­

ment-Literatur und Forschungspublikationen und aktuelle Nachrichten.

• ItB - die besten Fachleute: Die ZtB ist eine der altesten und renommiertesten deutschen Fachzeit­schriften fUr Betriebswirtschaft. oer Herausgeberkreis von namhaften Person­lichkeiten aus Hochschule und Wirtschaft in Europa, USA und Japan sowie Prof. Dr. Horst Albach als Schriftleiter burgen fUr die Qualitat der Beitrage.

• ZfO - zusitzlicher Informationsvorsprung: 2-4x jahrlich erscheinen Erganzungshefte zu besonders aktuellen Themengebieten mit systematisch gegliedertem Know-how, z. B. Business Process Reengineering, lemende Unternehmen, Betriebliches Umweltmanagement.

• ZfB erscheint 12x jahrlich.

Anderuogen vorbehalten. ErMltlich IIl1 Buchhandel oder bell1l Verlag

Abfaham·UncoIn·Str 46. Postfach 1547,65005 WKlSbaden F8JI: : (06 11 )7878-423, http://wwwgabler-on!ine.de