palmen an der ostsee oder was wir gegen den …...chair of fluid dynamics,...

Post on 21-Jan-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 1

Palmen an der Ostsee oder was wir gegen den Klimawandel tun können

Christian Oliver Paschereit

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 2

Global warming

Glacier in Patagonia, Argentina

1928

2004

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 3

Outline

Presentation of the chair

What is global warming?

Evidence for global warming

How is “energy” related to global warming?

What can we do? What are we doing?

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 4

Outline

Presentation of the chair

What is global warming?

Evidence for global warming

How is “energy” related to global warming?

What can we do? What are we doing?

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 5

Our missionOur goals

We provide highly trained engineers who comply with the ambitious demands of industry and research

Our basic technology development follows long term goals

We integrate “real world” challenges into the academic fundamental research

Goal: Develop technologies for energy conversion with lowest CO2 impact

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 6

Fluid Dynamics Wind Tunnel Test Facility

Building and vehicleaerodynamicsLift and drag controlSeparation control

Plasma assisted controlNoise reduction

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 7

Fluid Dynamics – Building AerodynamicsForces, emissions

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 8

Fluid Dynamics – Vehicle AerodynamicsAirplanes, cars, trucks, trains, ships

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 9

Fluid Dynamics –Active flow control for wind turbines

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 10

Fluid Dynamics – Sailing research

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 11

Fluid Dynamics – Misc

Fluid dynamics in medical applications

Micro gas turbine

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 12

Combustion –Increase efficiency, decrease emissions

Combustion chambers and boilersThermoacoustics, combustion noiseControl & Modelling

New combustion conceptsHydrogenadvanced sensors

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 13

Outline

Presentation of the chair

What is global warming?

Evidence for global warming

How is “energy” related to global warming?

What can we do? What are we doing?

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 14

The greenhouse effect

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 15

What are greenhouse gases?

Carbon dioxide CO2

Methane CH4

Nitrous Oxide N2O (Lachgas)

Water vapour H2O

Ozone

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 16

Outline

Presentation of the department

What is global warming?

Evidence for global warming

How is “energy” related to global warming?

What can we do? What are we doing?

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 17

Reconstructing past climate change

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 18

Concentration of green house gases for the last 2000 years

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 19

Global warming

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 20

Evidence for global warming

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 21

Which sector is the first in world wide CO2 emissions?

Transport (cars, trains, airplanes, ships)

Industry (excluding electricity generation)

Electric power generation

Heating (residential and tertiary)

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 22

CO2 Emissionen

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 23

Outline

Presentation of the department

What is global warming?

Evidence for global warming

How is “energy” related to global warming?

What can we do? What are we doing?

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 24

How is power generation related to climate change?

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 25

What are the consequences?

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 26

Outline

Presentation of the department

What is global warming?

Evidence for global warming

How is “energy” related to global warming?

What can we do? What are we doing?

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 27

Energy and climate change

Continue as before

Fast development and introduction of efficient technologies

Intergovernmental Panel on Climate ChangeFourth Assessment Report

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 28

Energy generation now and in thefuture

0

200000

400000

600000

800000

1000000

1990 2000 2010 2020 2030 2040 2050

Year

Prim

ary

Ener

gy (P

J)

SolarWindHydroNuclear

BiomassNat. GasOilCoal

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 29

Power generationHydro power plant

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 30

Power generationNuclear power plant

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 31

Power generationCoal-fired (steam) power plant

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 32

Power generationCombined cycle (gas & oil) power plant

Gas Turbine

Control Systems

GeneratorSteam Turbine

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 33

Gas turbinesSchematic

ALSTOM GT13E2

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 34

Gas turbine Power generation

• Single cycle engine– Base-load power generation

– Engine efficiency ~40 %

Generator

Source: ALSTOM

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 35

Gas TurbineControl Systems Generator

Steam Turbine

Gas turbine Power generation (II)

• Combined cycle engine– Cycle efficiency ~60 %

Source: ALSTOM

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 36

Brayton cycle (gas turbine cycle)Diagrams

2 3 41 compressorisentropic compression

combustorisobaric heat

addition

turbineisentropicexpansion

ambientisobaric heat loss

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 37

Efficiency & specific workInfluencing factors

Efficiency depends on– pressure ratio r = p2 / p1 and gas

properties– increases with r

23QWη =

Specific work -depends on r and t = T3 / T1 with t from metallurgical limit (e.g. T3 = 1650 K)

-maximum when T2=T4

1TcW

p

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 38

Effects of turbine and compressor losses

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 39

“Greener” power

Efficiency increase– Pressure– Temperature– Cooling– Losses

Carbon capture and storage– Loss in efficiency

• Pre combustion 6 – 10 %

• Post combustion 10 – 14 %

Advanced cycles– Recuperation– Wet cycles– Pressure increased

combustor

20

25

30

35

40

45

50

1960 1970 1980 1990 2000 2010uncooled

Internal cooling

Annular combustorFilm cooling

optimization

effic

ienc

y [%

]

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 40

Humid Gas Turbine Cycle

In the Humid Gas Turbine (HGT) cycle, water or steam is introduced into the working fluid of the gas turbineTwo different approaches are possible:– Injection of steam or water, e.g. Steam Injected Gas Turbine (STIG)

or Cheng Cycle– Use of humidification towers to evaporate the water, e.g. Humid Air

Turbine (HAT) or Evaporative Gas Turbine (EvGT)

Different versions of these technologies are being developed, using intercooling, recuperation or reheat

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 41

Higher efficiency at reduced NOx

Advantages:– Higher efficiency (10 – 15 %):

• Use of exhaust gas heat– Significantly increased power density (>100 %)– Reduced NOx emissions:

• The moisture lowers the flame temperature – CO2-sequestration:

• The flue gases have a high concentration of CO2 after condensation of the steam– Hydrogen combustion:

• Steam injection allows for H2 combustion at low NOx emission levelsDisadvantages:

– Need for purified water– Increased complexity of the power plant

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 42

Ultra wet cycles

With increased degree of humidity:– NOx emissions decrease

The operating range (ΔΦ) is extendedNOx emissions can be reduced by 90% (Ω=0.3, at constant power output)

air

steam

mm&

&=Ω

air

steam

mm&

&=Ω

H2

Natural gas Hydrogen

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 43

Pressure increase combustor

Constant volume combustionEfficiency increase by > 10 %

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 44

What else are we doing already?

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 45

Fundamental ThermoacousticsPossible Consequences

TA instabilities result in high-amplitude pressure pulsationsConsequences– increased pollutant emissions– reduced lifetime & system failure– increased noise emissions

deterioration of system performance

by courtesy of T. C. Lieuwen Sewell et al. GT2004-54310

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 46

Atmospheric combustion test rigSet-Up

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

Abs

(T22

)

Frequency [Hz/Hz]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-3

-2

-1

0

1

2

3

Phs

(T22

)

Frequency [Hz/Hz]

Flame transfer matrix measurement

Analytic models

Fit unknown coefficients

•Stability analysis•Frequency response•Time-domain simulation

Full 3-D acoustic model

gas turbine

Hybrid approach:steady CFD analysis for flame model parameterssteady CFD analysis of the burner transfer function

Thermoacoustic simulation strategy

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 48

Application of Helmholtz dampers Simulation of engine spectra

multiple burner silo combustor– non uniform arrangement

non-uniform arrangement of Helmholtz dampersdifferent dampers for different frequencies

suppression ofinstability byadditional Helmholtz dampers

stronginstability

23 24 25 2622 10 11 12 27

21 9 3 4 13 28

GT 20 8 2 1 5 14 29 VD37 19 7 6 15 30

36 18 17 16 3135 34 33 32

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 49

Impedance Tuning – Motivation

Different acoustic boundary conditions of engine and test rigdifferent dynamicsassessment of new burner technologies in test rig not transferable toengine performancereliable prediction of thermoacoustic stability and emissions not possible

HFI test rig

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 50

Change of test rig geometry

Approach: adjustment of acoustic BC’s by means of geometry changes or active control

Mongia et al., JPP 2003 Lieuwen & Neumeier, PCI 2002

TUB approachactively tune test rig to engine acoustics

– partially tunable (laboratory scale) test rigs– degree of reflectivity remains the same (limit-cycle amplitude)– application to more complex industrial test rigs difficult

(high mass flows & elevated pressure)

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 51

Impedance tuning at discrete frequencies

: baseline w/ orifice

◊: baseline w/o orifice

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 52

Impedance tuning at discrete frequencies

o : @ f = 78 Hz

Chair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI)C. O. Paschereit Institute of Fluid Mechanics and Acoustics oliver.paschereit@tu-berlin.de 23 June 2009 53

Conclusions

Concentration of green house gases are increasingThese may lead to climate changeSolving this problem demands leap advencedtechnologiesTU Berlin provides Research and Development in these areasExcellent time to study engineering

top related